
zVSAM V2 Design and Logic Manual V2.3

Table of Contents
Items marked ### are not yet complete

 Introduction
 Copyright
 Acknowledgements
 Terminology
 Compatibility
 zVSAM compatibility with IBM VSAM
 zVSAM V2 compatibility with zVSAM V1

 API for Assembler and zCOBOL programs
 ACB-based interfaces
 ACB macro
 ACB MACRF keywords

 OPEN macro
 OPEN macro parameters
 OPEN logic
 OPEN execution logic
 Implied OPEN table

 EXLST Macro
 EXLST macro parameters
 Exit logic

 CLOSE macro
 CLOSE macro parameters
 CLOSE logic
 CLOSE execution logic###

 RPL-based interfaces
 RPL macro
 POINT Macro###
 GET Macro###
 PUT Macro###
 ERASE Macro###
 CHECK Macro###
 ENDREQ Macro###
 VERIFY Macro###

 GENCB, MODCB, TESTCB and SHOWCB use of the CBMR
 CBMR – header
 CBMR – body
 CBMR – tail
 GENCB, MODCB, TESTCB and SHOWCB use of MF=
 GENCB BLK=ACB macro
 GENCB BLK=EXLST macro
 GENCB BLK=RPL macro

 MODCB ACB= macro
 MODCB EXLST= macro
 MODCB RPL= macro

 SHOWCB with no specified block type macro
 SHOWCB ACB= macro
 SHOWCB EXLST= macro
 SHOWCB RPL= macro

 TESTCB ACB= macro###
 TESTCB EXLST= macro###
 TESTCB RPL= macro###

Catalog management
Physical structure of the files
 Basic Concepts
 Files, Blocks, Records
 Cluster types and Cluster Components
 Record Formats

File Structure
 Physical files
 Structure of physical files
 Block Header Structure
 Block Footer Structure
 Prefix Block
 Prefix Block chain summary
 Spacemap Blocks
 Record Pointer List Structure (RPTR)
 Segment Prefix (SPX)

 Data Blocks
 Data Block Structure (SPANNED=NO)
 Data Block Structure (SPANNED=YES)
 Data Block

 AIX Blocks
 AIX Block Structure (Unique)
 AIX Block (Unique)
 AIX Block Structure (Non-unique)
 AIX Block (Non-unique and not segmented)
 AIX Block (Non-unique and segmented)
 ELIX Block

 Index Blocks
 Index Block Structure: Single level
 Index Block Structure: Two Levels
 Index Block Level 0
 Index Block other levels

 Structure and Functions by dataset type
 KSDS Fixed non-Spanned
 KSDS Fixed Spanned
 KSDS Variable non-Spanned
 KSDS Variable Spanned

 ESDS Fixed non-Spanned
 ESDS Fixed Spanned
 ESDS Variable non-Spanned
 ESDS Variable Spanned

 RRDS Fixed non-Spanned
 RRDS Fixed Spanned
 RRDS Variable non-Spanned
 RRDS Variable Spanned

Logical processes for RPL-based requests
 POINT function###
 GET function
 PUT function
 ERASE function
 CHECK function###
 ENDREQ function###
 VERIFY function###
 Locking###

Addenda
 API for ACB-based interfaces
 TESTCB ACB macro parameters
 TESTCB EXLST macro parameters

 API for RPL-based interfaces
 TESTCB RPL macro parameters
 POINT macro parameters
 GET macro parameters
 PUT macro parameters
 ERASE macro parameters
 CHECK macro parameters
 ENDREQ macro parameters
 VERIFY macro parameters

 List of changes
 V2.0
 V2.1
 V2.2
 V2.3

Introduction
This document describes the structure of the zVSAM component of the z390 assembler and
emulator. It consists of the following parts:
 A description of the structure of the interfaces used
 A description of the structure of the files
 A description of the logical processes that implement ACB-based requests
 A description of the logical processes that implement RPL-based requests
 Addenda

Copyright Notice
This document Copyright 2018 – z390 development team

z390 is free software; its associated documentation is equally free. You can redistribute and/or modify both
software and documentation under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any later version

z390 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with z390; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

Acknowledgements
z390's purpose is to provide a source-level compatible assembler, linker and run-time emulation engine for
IBM's High-Level Assembler environment. By extension, the zVSAM component described in this
document also aims at providing source-level compatibility. As a consequence, all source-level interfaces
necessarily mimic the IBM-provided (and IBM-copyrighted) interfaces as described by IBM in publicly
accessible documents

The logic and implementation behind these interfaces, however, was developed independently from IBM and
is the product of the joint efforts of our team of volunteer developers

Source-level compatibility is a primary goal not only for z390 and zVSAM, but also for other z390
components such as zCOBOL and zCICS.

All IBM publications and software we refer to in this document are copyright IBM Corporation with no
exception

The drawings in this document have been made using the draw.io software
As part of the open source for z390 the xml and jpg documents describing these drawings are available with
every distribution of z390 that contains this document

Terminology
The reader is assumed to have at least some familiarity with IBM VSAM, to the extent that most of the
following acronyms and terms are understood:
-ACB Access Control Block
-AIX Alternate IndeX
-CBMR Control Block Modification Request (zVSAM)
-CI Control Interval
-ELIX Extended Level IndeX – extra index level for non-unique AIX (zVSAM)
-ESDS Entry Sequenced Data Set
-IBM International Business Machines Corp., USA
-KSDS Key Sequenced Data Set
-Path Access to a base cluster, usually through an AIX
-RBA Relative Byte Address
-RDW Record Descriptor Word in IBM-defined format
-RLF Record Length Field – (zVSAM)
-RPL Request Parameter List
-RRDS Relative Record Data Set
-RRN Relative Record Number
-SPX Segment Prefix (zVSAM)
-VSAM Virtual Storage Access Method
-XRBA Extended Relative Byte Address
-XLRA Extended Logical Record Address (zVSAM)
-zACB zVSAM equivalent of the ACB
-zEXLST zVSAM equivalent of the EXLST
-zRPL zVSAM equivalent of the RPL

In this document we also use the following terms. The ones that are used by IBM as well, are intended to
have the same meaning they do in IBM manuals

Area a section of storage with a defined layout, depending on the type of Area
Block zVSAM equivalent of a Control Interval
Cluster a set of files that logically belong together
Component either a data component or an index component of a cluster
Element a primary key or XRBA in an AIX record
File a single file as seen by the hosting operating system
Foxes a value consisting of all high-values i.e. a value of all X'FF' bytes.
List a structure holding items that are linked together by pointers
Segment a portion of a record in a spanned dataset
Segmented a record that has been split into segments in a spanned dataset
Spanned an attribute of a dataset that allows records to be split into segments
Sphere a cluster and all associated AIXs
Table a structure holding items that are physically adjacent

Compatibility
As this document relates to zVSAM V2, there are two type of compatibility we need to consider. On the one
hand we have designed zVSAM to be compatible with IBM VSAM. And on the other hand we need to
consider compatibility with z390's zVSAM V1 – the prior implementation of zVSAM in the z390
environment

zVSAM compatibility with IBM VSAM
Our z390 implementation of zVSAM V2 is intended to be source-level compatible with IBM VSAM. This
has the following consequences:

1. IBM VSAM documentation with regards to macros and interfaces applies to zVSAM with the
exception of parameters and options not supported by zVSAM. Where zVSAM differs in behaviour
this is noted in this document. Please refer to the macro descriptions for details

2. Control Blocks (such as ACB, RPL and some others) are not compatible. zVSAM has its own
structures. A side effect of this may be that a program's assembled object code may be different in
size than on your IBM operating system. On rare occasions you may need an additional base register
when porting your program either way

3. As a rule of thumb, a program using VSAM can be ported to z390 and should be able to assemble,
link and run without modification – provided it uses only the VSAM features and options that
zVSAM supports. And provided the program does not run out of addressability due to different
control block lengths

zVSAM V2 compatibility with zVSAM V1
The user of z390's zVSAM component should be aware that zVSAM V2 as described in this document is not
compatible with the pre-existing zVSAM V1. We – the development team – apologize for the inconvenience
this may cause

We have taken the following measures to facilitate the transition from zVSAM V1 to zVSAM V2:
 1) We have introduced a new z390 option: ZVSAM which indicates which version of
 zVSAM you want z390 to use. It takes the following forms:
 ZVSAM(0) – zVSAM usage is disallowed

 ZVSAM(1) – zVSAM V1 is enabled, zVSAM V2 is disabled
 ZVSAM(2) – zVSAM V2 is enabled, zVSAM V1 is disabled
 For maximum compatibility the default is set to ZVSAM(1).
 The default will be changed to ZVSAM(2) in a future release of z390

 2) To convert your zVSAM V1 clusters to zVSAM V2 you'll have to take the following steps:
 - unload the existing data from their clusters using REPRO

 - reload your data from your unload files, using ZREPRO
 For details on how to use REPRO, please refer to the "z390_VSAM_User_Guide"

 For details on how to use zREPRO, please refer to the "z390_zVSAM_zREPRO_User_Guide"

 3) For zVSAM V1 and zVSAM V2 there are distinct macro libraries, MACVSAM1 and MACVSAM2
 To use the correct zVSAM maclib, specify the correct version in your maclib concatenation

 4) If a program is to run with ZVSAM(2), then all submodules that contain an OPEN macro must be
 re-assembled using MACVSAM2, even those that only use QSAM

http://www.z390.info/development/zVSAM/z390_zVSAM_zREPRO_User_Guide.pdf
http://www.z390.org/z390_VSAM_User_Guide.pdf

API for Assembler and zCOBOL programs

ACB-based interfaces
The ACB is the primary interface for operations at the cluster level.
Each cluster is represented by an ACB

The ACB interface consists of an ACB control block, possibly an Exit list Control Block, and a set of macros
to manage and manipulate the ACB and EXLST control blocks. These macros can be used in your assembler
programs. For zCOBOL and/or other higher-level languages, these macros will be generated from
specifications for the files as appropriate in the host language's syntax

The following macros are provided for assembler programs:

- ACB
- ACBD
- CBMR
- GENCB BLK=ACB
- MODCB ACB=
- SHOWCB ACB=
- TESTCB ACB=

Note: The ACB macro defines a statically allocated ACB. This macro is primarily intended for use in non-re-
entrant programs. GENCB BLK=ACB should be used to create an ACB in dynamically acquired storage, or
in private static storage. MODCB ACB= can be used to modify an existing ACB, whereas SHOWCB ACB=
can be used to query specific fields of an ACB and TESTCB ACB= can be used to validate specific fields of
an ACB

- EXLST
- EXLSTD
- GENCB BLK=EXLST
- MODCB EXLST=
- SHOWCB EXLST=
- TESTCB EXLST=

Note: The EXLST macro defines a statically allocated EXLST. This macro is primarily intended for use in
non-re-entrant programs. GENCB BLK=EXLST should be used to create an EXLST in dynamically
acquired storage, or in private static storage. MODCB EXLST= can be used to modify an existing EXLST,
whereas SHOWCB EXLST= can be used to query specific fields of an EXLST and TESTCB EXLST= can
be used to validate specific fields of an EXLST

- OPEN
- CLOSE

Note: OPEN and CLOSE macros can be used to open and close either sequential files represented by a DCB
and/or zVSAM files represented by an ACB

A description of these interfaces as implemented for z390 and zVSAM is detailed in the next chapters

ACB Macro
The ACB macro will generate an ACB and initialize it according to the parameters specified on the macro
invocation

Direct access to subfields in the ACB is discouraged. Use SHOWCB ACB=, TESTCB ACB= and/or
MODCB ACB= to inspect, test, and/or modify the ACB's content

All keywords on the ACB macro are optional. Before the cluster is opened, all ACB values can be modified
using MODCB ACB=, or by changing the ACB directly. The latter is not recommended, as it is not
guaranteed to be portable or compatible with future versions of zVSAM

The table below shows how the ACB macro can be coded
Opcode Operand Remarks

[label] ACB [AM=VSAM] Designates this ACB as a zVSAM ACB

[DDNAME=ddname] DDNAME: name of an environment variable in the host OS
holding the name of the cluster to be processed
See notes here

[PASSWD=ptr] Pointer to password for the cluster
Points to a single byte length followed by the password
eg. X'05',C'ABCDE'

[EXLST=ptr] Pointer to an exit list.
Please see the EXLST macro description for details here

[MACRF=(keywd_list)] List of keywords specifying processing options
See table below for valid keywords here

[BUFSP=nr] Max amount of storage (in bytes) to use for buffers
See notes here

[BUFND=nr] Number of data buffers to allocate for this ACB
Specify a number between 1 and 65535

[BUFNI=nr] Number of index buffers to allocate for this ACB
Specify a number between 1 and 65535

[RMODE31=keyword] Indicates whether buffers and/or control blocks can be allocated
above the line
See notes here

[STRNO=1] Number of concurrent requests allowable for this ACB
Specify a number between 1 and 255

[BSTRNO=nr] Beginning number of concurrent requests allocated to this ACB
when a path is opened. Only applies if MACRF=NSR
Specify a number between 0 and 255

[MAREA=ptr] Not supported – future option
Keyword is flagged as ignored with a warning message

 [MLEN=nr] Not supported – future option
Keyword is flagged as ignored with a warning message

[RLSREAD=keyword] Not supported – future option
Keyword is flagged as ignored with a warning message

[SHRPOOL=nr] LSR shared pool number – future option

ACB MACRF keywords
Keyword subset Keyword Remarks

[ADR KEY] ADR Addressed access to ESDS by (X)RBA
Using (X)RBA to access a KSDS is not supported

KEY Keyed access to a KSDS
RRN access to an RRDS

CNV Not supported. Keyword is flagged with a warning message

[DFR | NDF] DFR Allow writes to be deferred

NDF Do not defer writes

[DIR SEQ SKP DIR Direct access to ESDS, KSDS or RRDS

SEQ Sequential access to ESDS, KSDS or RRDS

SKP Skip sequential access to KSDS or RRDS
Only for keyed access. Allows the use of POINT

[IN OUT] IN Read only access for ESDS, KSDS or RRDS

OUT Both read and write access for ESDS, KSDS or RRDS

[NIS | SIS] NIS Normal Insert Strategy for KSDS

SIS Sequential Insert Strategy for KSDS

[NRM | AIX] NRM DDNAME indicates cluster to be processed

AIX DDNAME of a path to access an AIX directly, rather than
using it to access records in the underlying base cluster

[NRS | RST] Not supported. Keyword is flagged with a warning message

[LSR | GSR | NSR | RLS] Local, Global or no Shared Buffers. RLS is not supported

[NUB/UBF] Not supported. Keyword is flagged with a warning message

[CFX/NFX] Not supported. Keyword is flagged with a warning message

[DDN/DSN] Not supported. Keyword is flagged with a warning message

[ICI/NCI] Not supported. Keyword is flagged with a warning message

[LEW/NLW] Not supported. Keyword is flagged with a warning message

With the exception of the DDNAME parameter explained below, all supported parameters are implemented
compatibly with IBM's VSAM implementation. For details, please refer to the relevant IBM manual

DDNAME= notes
DDNAME is required before open is executed. If DDNAME is not supplied on the ACB macro, the label
used on the ACB macro is used as DDNAME. If neither is specified, a proper value must be supplied by
using MODCB ACB=

In zVSAM the DDNAME refers to the name of an environment variable in the host OS. This variable in turn
should contain the path and qualified filename of the cluster to be opened. The qualifier is the name of an
environment variable in the host OS and is the path to the assembled catalog
For more information on zVSAM catalogs, please refer to the "z390_zVSAM_Catalog_User_Guide"
For more information on environment variables, please refer to the “z390_zVSAM_zREPRO_User_Guide”

http://www.z390.info/development/zVSAM/z390_zVSAM_zREPRO_User_Guide.pdf
http://www.z390.info/development/zVSAM/z390_zVSAM_Catalog_User_Guide.pdf

BUFSP= notes
Maximum buffer space in virtual storage for this cluster
This is the combined size in bytes of all buffers allocated for this cluster. If (BUFND + BUFNI) * Block_size
exceeds the value specified for BUFSP, then BUFND and BUFNI will be reduced proportionally to keep the
total allocation below the limit specified in the BUFSP parameter

RMODE31= notes
Specifies whether buffers and/or control blocks should be allocated below or above the 16M line:
 NONE Control Blocks and buffers below 16M
 CB Control Blocks above or below 16M, buffers below 16M
 BUFF Control Blocks below 16M, buffers above or below 16M
 ALL Control Blocks and buffers above 16M or below 16M
The default for RMODE31 is NONE

OPEN macro
A cluster needs to be opened before it can be processed. The open macro is used to open one or more clusters
and/or one or more sequential files in a single call

Opcode Operand Remarks

[label] OPEN (entry[,entry]...) Each cluster or file requires an entry of two parameters

[MODE=24/31] Residency mode of all control blocks involved.
Specify 31 if any resides above the line

Entry format: addr,(options) Address of ACB or DCB, followed by a list of options
(for DCB only). For ACB omit the list of options.

[MF=I or omitted] Use standard form of OPEN

[MF=L] Use list form of OPEN

[MF=(E,addr)] Use execute form of OPEN

All supported parameters are implemented compatibly with IBM's VSAM implementation. For details,
please refer to the relevant IBM manual

OPEN macro parameters
entry The OPEN macro accepts a list of entries. Each entry consists of two consecutive parameters:
 an address and an optional list of options

address The address can be specified as an A-type address or as a register. If a register is
coded the register number or name must be enclosed in parentheses. The address can
be either the address of a DCB or the address of an ACB

options For a DCB options may be encoded according to the z390_File_Access_Method_Guide
For an ACB the options list is ignored and should be coded as an omitted parameter
Any options (e.g. IN/OUT) are taken from the ACB, not the open parmlist

MF=I or omitted
 An open parmlist is generated inline, plus a call to the OPEN SVC using the parmlist

MF=L An open parmlist is generated inline

MF=(E,addr) Code to modify/populate the open parameter list at the indicated address, which may be a
 relocatable constant or a (register), plus a call to the OPEN SVC using the parmlist

http://www.z390.org/z390_File_Access_Method_Guide.pdf

OPEN logic
Open logic has two major components: the open macro and the actual run-time logic to execute a request to
open a file or a number of files

Open parameter list entries have two different formats depending on the MODE parameter.
When MODE=24 then each entry is one fullword
When MODE=31 then each entry is two fullwords

Only one SVC 19 is generated for each OPEN macro (MF=I or E)
The list format and input to OPEN depend on MODE=
 MODE=24 AL1(option),AL3(DCB/ACB address)
 R1 points to the list

 MODE=31 AL1(option),XL3'00',AL4(DCB/ACB address)
 R0 points to the list and R1=0

 option=X'40' INPUT
 option=X'20' OUTPUT
 option=X'60' UPDATE
 The last entry has the X'80' bit on in option
 The option is ignored when opening an ACB

OPEN execution logic
OPEN execution logic is implemented as a Java routine
This logic consists of the following elements:

Action Details

Determine type of parameter list 31-bit entries, addressed by R0, if R1 = 0
24-bit entries, addressed by R1, if R1 <> 0

loop over all entries in the parameter list End-of-list is indicated in the option byte of the entry

- check pointer: ACB or DCB First byte = X'A0' => ACB V1
First four bytes = C'zACB' => ACB V2
First four bytes = C'DCBV' => DCB
Otherwise => Error

- if DCB invoke DCB open routine OPEN logic for DCB is beyond the scope of this document

- if ACB validate ACB ACBID <> X'A0' => Error
ACBSTYP <> X'10' => Error
ACBVER <> X'02' => Error
ACB V1/V2 <> ZVSAM(n) parm => Error

- if ACB valid invoke VSAM open routine

- next entry or end-of-loop If bit 0 of an entry is on, terminate loop

OPEN logic for ACB handles a single ACB and proceeds as follows:
Action Details

Check ACB status If ACB already open, issue error and fail open

Copy ACB to newly created FCB FCB is the java-equivalent of the ACB

Extract DDNAME Copy ACBDDNM field from ACB/FCB

Find actual file name Retrieve host variable with name matching ACBDDNM
If not available: issue error and fail open

Validate against catalog Find the file name in the catalog. If missing: issue error
See note here

Issue OS open against file Read-only if ACB specifies MACRF=IN
Update/extend otherwise
If unsuccessful issue error and fail open

Allocate buffer for prefix block Save buffer address in FCB

Read first 4096 bytes into buffer If read fails, issue error

Validate block header and footer If BHDREYE <> C'HDR' issue error
If BFTREYE <> C'FTR' issue error
If BHDRSEQ# <> BFTRSEQ# issue error
If BHDRVER <> X'02' issue error
If BHDRSELF <> foxes issue error
If BHDRPREV <> foxes issue error
If BHDRNEXT <> foxes issue error
If BHDRFLGS <> X'80' issue error

Action Details

Validate prefix area if PFXEYE <> C'zPFX' issue error
if filename <> PFXDNAM issue error
if file's path <> PFXDPAT issue error
if PFX_INDX is on issue error

Validate counters area if CTREYE <> C'zCTR' issue error

Validate prefix against catalog Only if no errors detected thus far:
compare cluster type
compare lrecl
compare blocksize
compare key offset
compare key length

Fail open on error If any error was detected:
- request OS to close the file
- free the prefix buffer
- set buffer pointer in FCB to zeros
- fail the open request

Issue OS open against index file If PFXXNAM@ is non-zero then open the indicated index file; read-
only if ACB MACRF=IN for input/update/extend otherwise
Read index header block and repeat all validations with the following
modifications:
- if PFX_INDX is off rather than on issue an error

Fail open on error If any error was detected:
- request OS to close the files
- free the prefix buffers
- set buffer pointer in FCB to zeroes
- fail the open request

Create data buffers Based on ACBBUFND

Create index buffers At least ACBBUFNI in total
Exactly one for the root block
At least 4 for each other index level

Open component What is opened depends on what type of component the ACB points to
A path may imply opening of the base cluster and/or AIXs
Repeat the open process for each component
File names and other info to be gathered from the catalog
The table on the next page has the permutations of component types

Note: The environment variables take the following form
 SET ddname=drive:\path\catalog.filename
 SET catalog=drive:\path
 The ddname variable may only contain one dot

Implied OPEN table

This table has the permutations of component types, indented entries are implied processing

Open component MACRF=IN MACRF=OUT

Base

 AIXs (UPGRADE=NO)

 AIXs (UPGRADE=YES)

Opened for input

Not opened

Not opened

Opened for in/out

Not opened

Opened for in/out
See Note 3 here

PATH (NOUPDATE) to Base

 AIXs (UPGRADE=NO)

 AIXs (UPGRADE=YES)

Opened for input
No error if already open

Not opened

Not opened

Opened for in/out
No error if already open

Not opened

Not opened
See Note 1 here

PATH (UPDATE) to Base

 AIXs (UPGRADE=NO)

 AIXs (UPGRADE=YES)

Opened for input
No error if already open

Not opened

Not opened

Opened for in/out
No error if already open

Not opened

Opened for in/out
See Note 3 here

PATH (NOUPDATE) to AIX
See Note 4 here

 AIXs (UPGRADE=NO)

 AIXs (UPGRADE=YES)

Implied open of Base
No error if already open
See Note 2 here

AIX opened for input

Not opened
See Note 1 here

Implied open of Base
No error if already open
See Note 2 here

AIX opened for input

Not opened
See Note 1 here

PATH (UPDATE) to AIX
See Note 4 here

 AIXs (UPGRADE=NO)

 AIXs (UPGRADE=YES)

Implied open of Base
No error if already open
See Note 2 here

AIX opened for input

Opened for in/out
See Note 3 here

Implied open of Base
No error if already open
See Note 2 here

AIX opened for input

Opened for in/out
See Note 3 here

Notes:
1. A NOUPDATE PATH means that the structures for AIXs on the upgrade set are not created
2. The Base is opened by zVSAM for input but has no associated ACB as it hasn't been opened by the app
3. All AIXs on the upgrade set are opened for in/out by zVSAM and may be updated
4. A PATH to an AIX ignores MACRF=IN/OUT

EXLST macro
The EXLST macro will generate an Exit List control block and initialize it according to the parameters
specified on the macro invocation

The structure and layout of the generated EXLST are not part of the interface and are therefore not shown in
this chapter. Direct access to subfields in the EXLST is discouraged. Use SHOWCB EXLST=, TESTCB
EXLST= and/or MODCB EXLST= to inspect, test, and/or modify the EXLST's content

All keywords on the EXLST macro are optional. Before the cluster is opened, all EXLST values can be
modified using MODCB EXLST=, or by changing the EXLST directly. The latter is not recommended, as it
is not guaranteed to be portable or compatible with future versions of zVSAM

The table below shows how the EXLST macro can be coded:
Opcode Operand Remarks

[label] EXLST [AM=VSAM] Designates this EXLST as a zVSAM EXLST

[EODAD=(addr[,mod]]) End-of-data exit routine

[LERAD=(addr[,mod]]) Logical error analysis routine

[SYNAD=(addr[,mod]]) Physical error analysis routine

[JRNAD=(addr[,mod]]) Not supported. Keyword is flagged with a warning message

[UPAD=(addr[,mod]]) Not supported. Keyword is flagged with a warning message

[RLSWAIT=(addr[,mod]]) Not supported. Keyword is flagged with a warning message

All supported parameters are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

For GENCB MF=I, L or G, a missing addr will generate zero and no error, IBM displays an error
It is assumed that the addr will be made valid by a MODCB EXLST=
A missing mod will generate A

For GENCB MF=E, a missing addr or mod means don't modify that parameter in the CBMR

Note: Although a null address maybe set in the EXLST, you cannot change an address to null with MODCB

EXLST macro parameters
EODAD= Optional parameter to specify the entry address of an exit that handles an end-of-data

condition during sequential access
The routine address may be followed by a modifier. For details, please see below
The AMODE for the routine is encoded in the address using the common convention

LERAD= Optional parameter to specify the entry address of an exit that handles logic errors.
 The routine address may be followed by a modifier. For details, please see below

The AMODE for the routine is encoded in the address using the common convention

SYNAD= Optional parameter to specify the entry address of an exit that handles physical errors.
 The routine address may be followed by a modifier. For details, please see below
 The AMODE for the routine is encoded in the address using the common convention

mod modifier, can optionally be specified after each routine address
 Values: A or N for Active or Not-active. These are mutually exclusive
 As long as the routine is not active it will not be called by zVSAM
 The secondary modifier of L (for Load from Linklib) is not supported

Exit logic
This logic is only entered if any of the following conditions are raised:
 End-of-data (EODAD)
 Logical error (LERAD)
 Physical error (SYNAD)

Action Details

ACBEXLST has an address No action if zero

Check that the exit is active No action if inactive

Check that the address is not zero No action if zero

Branch to the exit address

CLOSE macro

A cluster needs to be closed after it has been processed. The close macro is used to close one or more clusters
and/or one or more sequential files in a single call

Opcode Operand Remarks

[label] CLOSE (entry[,entry]...) Each cluster or file requires an entry of two parameters

[MODE=24/31] Residency mode of all control blocks involved
Specify 31 if any reside above the line

[TYPE=T] Not supported – future option
Keyword is flagged as ignored with a warning message

Entry format: addr,, Address of ACB or DCB, followed by two commas to
show that options are omitted

[MF=I or omitted] Use standard form of CLOSE

[MF=L] Use list form of CLOSE

[MF=(E,addr)] Use execute form of CLOSE

All supported parameters are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

CLOSE macro parameters

For ease of access a short summary follows here:
entry The CLOSE macro accepts a list of entries. Each entry consists of two consecutive

parameters: an address and an optional list of options

address The address can be specified as an A-type address or as a register. If a register is coded the
 register number or name must be enclosed in parentheses. The address can be either the
 address of a DCB or the address of an ACB

options Code as an omitted parameter

MF=I or omitted
 If the MF parameter is omitted a close parmlist is generated inline, plus a call to the CLOSE
 SVC using the parmlist.

MF=L With MF=L a close parmlist is generated inline

MF=(E,addr) Code to modify/populate the close parameter list at the indicated address, which may be a
 relocatable constant or a (register), plus a call to the CLOSE SVC using the parmlist

CLOSE logic
The close macro generates a close parameter list and/or an SVC 20 instruction to invoke the close routine.
The syntax of the close macro is given here

The macro generates the following code:
MF variant Generated Code

MF=L Close parameter list data only

MF=(E,address) 1) Code to modify/populate the close parameter list at the indicated
 address, which may be a relocatable constant or a (register).
2) Code to invoke the close routine

MF=I or omitted 1) Close parameter list data (inline)
2) Code to invoke the close routine

Close parameter list entries have two different formats depending on the MODE parameter.
When MODE=24 then each entry is one fullword
When MODE=31 then each entry is two fullwords

Only one SVC 20 is generated for each CLOSE macro (MF=I or E)
The list format and input to CLOSE depend on MODE=
 MODE=24 AL1(option),AL3(DCB/ACB address)
 R1 points to the list

 MODE=31 AL1(option),XL3'00',AL4(DCB/ACB address)
 R0 points to the list and R1=0

 option=0 except for the last entry when option=X'80'

CLOSE execution logic
Close involves lock and buffer management and may involve the closure of associated AIXs

CLOSE execution logic is implemented as a Java routine
This logic consists of the following elements:

Action Details

Determine type of parameter list 31-bit entries, addressed by R0, if R1 = 0
24-bit entries, addressed by R1, if R1 <> 0

loop over all entries in the parameter list End-of-list is indicated in the option byte of the entry

- check pointer: ACB or DCB First byte = X'A0' => ACB V1
First four bytes = C'zACB' => ACB V2
First four bytes = C'DCBV' => DCB
Otherwise => Error

- if DCB invoke DCB close routine CLOSE logic for DCB is beyond the scope of this document

- if ACB valid invoke VSAM close routine

- next entry or end-of-loop If bit 0 of an entry is on, terminate loop

CLOSE logic for ACB handles a single ACB and proceeds as follows:
Action Details

Check ACB status If ACB already closed, issue error and fail close

Check lock status If any blocks in this dataset or any associated AIX are locked then wait
until the locks are freed
???may need a timeout mechanism

Check buffer status Free any read buffers
Write any buffers marked as 'pending write' and then free them

Issue OS close against file If unsuccessful issue error and fail close

RPL-based interfaces
The RPL is the primary interface for operations at the record level
A program can use multiple RPLs
An RPL must always point to an open ACB in order to specify a valid operation

RPL macro
The RPL macro will generate an RPL and initialize it according to the parameters specified on the macro
invocation

Direct access to subfields in the RPL is discouraged. Use SHOWCB RPL=, TESTCB RPL= and/or MODCB
RPL= to inspect, test, and/or modify the RPL's content

All keywords on the RPL macro are optional. Before a request is issued, all RPL values can be modified
using MODCB RPL=, or by changing the RPL directly. The latter is not recommended, as it is not
guaranteed to be portable or compatible with future versions of zVSAM

The table below shows how the RPL macro can be coded
Opcode Operand Remarks

[label] RPL [AM=VSAM] Designates this RPL as a zVSAM RPL

[ACB=addr] Address of an open ACB

[AREA=addr] Address of a record area
In Move mode the record is read into the area
In Locate mode a pointer to the record is moved into the area

[AREALEN=nr] Length of record area or record pointer

[ARG=addr] Address of the search argument
This is a key, a relative record number, or an RBA.

[ECB=] Address of an ECB. Used with Asynchronous requests

[KEYLEN=nr] Length of key value in ARG when a generic key search is
requested

[MSGAREA=addr] Address of message area

[MSGLEN=nr] Length of message area

[NXTRPL=addr] Address of the next RPL in the chain. RPLs can be chained
together to request a series ofoperations in a single call to zVSAM

[OPTCD=(keywd_list)] List of keywords specifying processing options
See table below for valid keywords

[RECLEN=nr] Record length. Required when updating or adding records

[TRANSID=nr] Not supported – future option.
Keyword is flagged as ignored with a warning message

Supported options for the OPTCD parameter are listed below:
Keyword subset Keyword Remarks

[ADR | KEY] ADR Addressed access to ESDS or KSDS (under review)

KEY Keyed access to KSDS or RRDS

CNV Not supported – future option.
Keyword is flagged as ignored with a warning message

[DIR | SEQ | SKP] DIR Direct access to ESDS, KSDS, RRDS

SEQ Sequential access to ESDS, KSDS or RRDS

SKP Skip sequential access to KSDS or RRDS

[ARD | LRD] ARD Access user-defined record location

LRD Access last record in the cluster

[FWD | BWD] FWD Forward processing

BWD Backward processing

[SYN | ASY] SYN Synchronous request

ASY Asynchronous request

[NUP | UPD | NSP] NUP Not for update

UPD For update

NSP Retain positioning for next sequential access

[KEQ | KGE] KEQ Locate record with exact key match

KGE Locate record with exact key match, or next higher value

[FKS | GEN] FKS Full key search

GEN Generic key search. KEYLEN required

[MVE | LOC] MVE Move mode

LOC Locate mode

[RBA | XRBA] RBA 4-byte RBA values

XRBA 8-byte extended RBA values

[NWAITX/WAITX] Not supported – future option.
Keyword is flagged as ignored with a warning message

[CR/NRI] Not supported – future option.
Keyword is flagged as ignored with a warning message

All supported parameters are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

POINT macro
GET macro
PUT macro
ERASE macro
CHECK macro
ENDREQ macro
VERIFY macro

GENCB, MODCB, TESTCB and SHOWCB use of the CBMR
A CBMR is generated for all forms of these macros

Direct access to subfields in the CBMR is discouraged. Use SHOWCB, TESTCB and/or MODCB to inspect,
test, and/or modify the content of an ACB, EXLST, or RPL. Use the appropriate MF= parameter on any of
these macros to modify and/or use a CBMR

The CBMR consists of three parts: a header, a body, and a tail. The header has a fixed layout. The body
consists of request-dependent fields and a list of verb codes. The tail contains all the data fields that go with
the verb codes. Data fields can be 0, 4 or 8 bytes in length.
Verb codes X'01'-X'5F' have a zero-length data field (i.e. no data field)
Verb codes X'60'-X'DF' have a 4-byte data field
Verb codes X'E0'-X'FF' have an 8-byte data field
All data fields in the tail are allocated consecutively, in the same order as the verbs that define their meaning

CBMR – header
The CBMR header identifies the type (ACB, EXLST, RPL, GENCB, MODCB, SHOWCB or TESTCB)
It also has details of any work area needed and a count of verbs in CBMRVRBS

CBMR – body
It's length is determined by the CBMRVRBS fields in the CBMR header
It contains one verb code for each specified parameter

CBMR – tail
The body is directly followed by the tail
It contains a data field of 4 or 8 bytes for each verb coded in the body, in the same sequence
The starting point of the tail can be found by adding the CBMRVRBS value to the end of the CBMR header
Its length can be calculated from the CBMRSIZE field, by subtracting both the header length and the
CBMRVRBS field

Additional notes:
CBMRACB_NRS – TESTCB only, always true
CBMRACB_RST – TESTCB only, always false
CBMRACB_NSR – TESTCB only, always true
CBMRACB_LSR – TESTCB only, always false
CBMRACB_GSR – TESTCB only, always false
CBMRACB_RLS – TESTCB only, always false
CBMRACB_NUB – TESTCB only, always true
CBMRACB_UBF – TESTCB only, always false
CBMRACB_CFX – TESTCB only, always false
CBMRACB_NFX – TESTCB only, always false
CBMRACB_DDN – TESTCB only, always false
CBMRACB_DSN – TESTCB only, always false
CBMRACB_ICI – TESTCB only, always false
CBMRACB_NCI – TESTCB only, always true
CBMRACB_LEW – TESTCB only, always true
CBMRACB_NLW – TESTCB only, always false
CBMRACB_REPL – TESTCB only, always false
CBMRACB_SSWD – TESTCB only, always false
CBMRACB_WCK – TESTCB only, always false
CBMRACB_CMPRS – TESTCB only, always false
CBMRACB_XADDR – TESTCB only, always true

CBMRACB_COPIES – GENCB only. If not specified, the CBMR handler assumes 1.
CBMRACB_PASSWD – pointer to a one-byte length field, followed by the password
CBMRACB_MAREA – TESTCB only, always 0
CBMRACB_MLEN – TESTCB only, always 0
CBMRACB_SHRPL – TESTCB only, always 0
CBMRACB_ENDRBA – ending RBA of the component, derived from ending XLRA.
CBMRACB_FS – Nr of free blocks per 100
CBMRACB_HALCRBA – High allocated RBA, derived from highest allocated XLRA.
CBMRACB_NEXT – for zVSAM the value is always 1.
CBMRACB_NSSS – always 0
CBMRACB_LEVEL – 4-byte address followed by 4-byte length of level info field
CBMRACB_LOKEY – 4-byte address followed by 4-byte length of key field
CBMRACB_RELEASE – 4-byte address followed by 4-byte length of level info field

Additional notes:
CBMRRPL_CNV – TESTCB only, always false

GENCB, MODCB, TESTCB and SHOWCB use of MF=
MF=I or omitted Generates CBMR and invokes ZVSAM19C to retrieve fields

MF=L Generates CBMR inline
MF=(L,addr) Generates CBMR inline and then moves it to addr
MF=(L,addr,label) as above and generates label equ size

MF=(E,addr) Modifies the CBMR at addr
 Invokes ZVSAM19C to retrieve fields using the CBMR

MF=(G,addr) Generates CBMR inline and then moves it to addr
 Invokes ZVSAM19C to retrieve fields using the CBMR
MF=(G,addr,label) as above and generates label equ size

addr can be label or reg, reg cannot be R0, R1, R14 or R15
reg is not permitted for MF=L

GENCB BLK=ACB macro
This GENCB macro will generate ACBs and initialize or change them according to the parameters specified
on the macro invocation. It is for this reason that all supported parameters and keywords of the ACB macro
(as described above) are supported on the GENCB macro

Direct access to subfields in the ACB is discouraged. Use SHOWCB ACB=, TESTCB ACB= and/or
MODCB ACB= to inspect, test, and/or modify the ACB's content

Direct access to subfields in the CBMR is strongly discouraged

The GENCB ACB macro can be coded as follows:
Opcode Operand Remarks

[label] GENCB BLK=ACB Instructs GENCB to generate 1 or more ACBs

[AM=VSAM] Optional, no other values allowed

[COPIES=1] The number of identical ACBs to generate
Specify a number between 1 and 65535

[WAREA=addr] The work area where the ACBs are to be constructed

[LENGTH=nr] Length of the work area in bytes
If WAREA/LENGTH are omitted then storage is
dynamically acquired

[LOC=BELOW | ANY] Where GENCB is to allocate dynamically acquired
storage if needed

[other] Any parameter supported on the ACB macro

[MF=] See the description of MF= here

All supported parameters are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

WAREA= When WAREA is specified, LENGTH must be specified too
 When WAREA is not specified, the CBMR handler allocates an area of storage

 The address of this area is returned in R1; its length in R0

LENGTH= Length in bytes of the area indicated by WAREA
When LENGTH is specified, WAREA must be specified as well

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=9 WAREA is too small
 R15=8 Reason Code=n/a Invalid CBMR
 An attempt was made to update a CBMR with a field not previously created

GENCB BLK=EXLST macro
The GENCB macro with BLK=EXLST will generate or manipulate Exit Lists for use with ACBs and
initialize or change them according to the parameters specified on the macro invocation. It is for this reason
that all supported parameters and keywords of the EXLST macro (as described above) are supported on the
GENCB macro when BLK=EXLST is specified

Direct access to subfields in the EXLST is discouraged. Use SHOWCB EXLST=, TESTCB EXLST= and/or
MODCB EXLST= to inspect, test, and/or modify the EXLST's content

Direct access to subfields in the CBMR is strongly discouraged

The GENCB EXLST macro can be coded as follows:
Opcode Operand Remarks

[label] GENCB BLK=EXLST Instructs GENCB to generate one or more EXLSTs

[AM=VSAM] Optional, no other values allowed

[COPIES=1] The number of identical EXLSTs to generate
Specify a number between 1 and 65535

[WAREA=addr] The work area where the EXLSTs are to be constructed

[LENGTH=nr] Length of the work area in bytes
If WAREA/LENGTH are omitted then storage is
dynamically acquired

[LOC=BELOW | ANY] Where GENCB is to allocate dynamically acquired
storage if needed

[other] Any parameter supported on the EXLST macro

[MF=] See the description of MF= here

All supported parameters are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

WAREA= When WAREA is specified, LENGTH must be specified too
 When WAREA is not specified, the CBMR handler allocates an area of storage

 The address of this area is returned in R1; its length in R0

LENGTH= Length in bytes of the area indicated by WAREA.
 When LENGTH is specified, WAREA must be specified as well

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=9 WAREA is too small
 R15=8 Reason Code=n/a Invalid CBMR
 An attempt was made to update a CBMR with a field not previously created

GENCB BLK=RPL macro
The GENCB BLK=RPL macro generates or manipulates RPLs and initializes or changes them according to
the parameters specified on the macro invocation. It is for this reason that all supported parameters and
keywords of the RPL macro (as described above) are supported on the GENCB macro

Direct access to subfields in the RPL is discouraged. Use SHOWCB RPL=, TESTCB RPL= and/or MODCB
RPL= to inspect, test, and/or modify the RPL's content

Direct access to subfields in the CBMR is strongly discouraged

The GENCB RPL macro can be coded as follows:
Opcode Operand Remarks

[label] GENCB BLK=RPL Instructs GENCB to generate 1 or more RPLs

[AM=VSAM] Optional, no other values allowed

[COPIES=1] The number of identical RPLs to generate
Specify a number between 1 and 65535

[WAREA=addr] The work area where the RPLs are to be constructed

[LENGTH=nr] Length of the work area in bytes
If WAREA/LENGTH are omitted then storage is
dynamically acquired

[LOC=BELOW | ANY] Where GENCB is to allocate dynamically acquired
storage - if needed

[other] Any parameter supported on the RPL macro

[MF=] See the description of MF= here

All supported parameters are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

WAREA= When WAREA is specified, LENGTH must be specified too
 When WAREA is not specified, the CBMR handler allocates an area of storage

 The address of this area is returned in R1; its length in R0

LENGTH= Length in bytes of the area indicated by WAREA.
 When LENGTH is specified, WAREA must be specified as well

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=9 WAREA is too small
 R15=8 Reason Code=n/a Invalid CBMR
 An attempt was made to update a CBMR with a field not previously created

MODCB ACB= macro
The MODCB macro with ACB=addr will modify an ACB according to the parameters specified on the
macro invocation. It is for this reason that all parameters and keywords of the ACB macro (as described
above) are supported on the MODCB macro when ACB=addr is specified

Direct access to subfields in the ACB is discouraged. Use SHOWCB ACB=, TESTCB ACB= and/or
MODCB ACB= to inspect, test, and/or modify the ACB's content. See note here

Direct access to subfields in the CBMR is strongly discouraged

The MODCB ACB macro can be coded as follows:
Opcode Operand Remarks

[label] MODCB ACB=address Points MODCB to the ACB to be modified

[AM=VSAM] Optional, no other values allowed

[other] Any parameter supported on the ACB macro

[MF=] See the description of MF= here

All supported parameters are implemented compatibly with IBM's VSAM implementation. For details,
please refer to the relevant IBM manual.

Note: When an ACB has MACRF=(OUT) which allows read and write functions it is not possible to change
 the ACB to read-only using MODCB
 If this is needed code the instruction NI ACBMACR1,255-ACBOUT

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=4 ACB= does not point to an ACB
 R15=4 Reason Code=12 MODCB was attempted on an open ACB
 R15=8 Reason Code=n/a Invalid CBMR or ACB
 An attempt was made to update a CBMR with a field not previously created

MODCB EXLST= macro
The MODCB macro with EXLST=addr will modify an EXLST according to the parameters specified on the
macro invocation. It is for this reason that all parameters and keywords of the EXLST macro (as described
above) are supported on the MODCB macro when EXLST=addr is specified

Direct access to subfields in the EXLST is discouraged. Use SHOWCB EXLST=, TESTCB EXLST= and/or
MODCB EXLST= to inspect, test, and/or modify the EXLST's content

Direct access to subfields in the CBMR is strongly discouraged

The MODCB EXLST macro can be coded as follows:
Opcode Operand Remarks

[label] MODCB EXLST=addr Points MODCB to the EXLST to be modified

[AM=VSAM] Optional, no other values allowed

[other] Any parameter supported on the EXLST macro

[MF=] See the description of MF= here

All supported parameters are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=4 EXLST= does not point to an EXLST
 R15=8 Reason Code=n/a Invalid CBMR or EXLST
 An attempt was made to update a CBMR with a field not previously created

MODCB RPL= macro
The MODCB macro with RPL=addr will modify an RPL according to the parameters specified on the macro
invocation. It is for this reason that all parameters and keywords of the RPL macro (as described above) are
supported on the MODCB macro when RPL=addr is specified

Direct access to subfields in the RPL is discouraged. Use SHOWCB RPL=, TESTCB RPL= and/or MODCB
RPL= to inspect, test, and/or modify the RPL's content

Direct access to subfields in the CBMR is strongly discouraged

The MODCB RPL macro can be coded as follows:
Opcode Operand Remarks

[label] MODCB RPL=addr Points MODCB to the RPL to be modified

[AM=VSAM] Optional, no other values allowed

[other] Any parameter supported on the RPL macro

[MF=] See the description of MF= here

All supported parameters are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=4 RPL= does not point to an RPL
 R15=8 Reason Code=n/a Invalid CBMR or RPL
 An attempt was made to update a CBMR with a field not previously created

SHOWCB with no specified block type macro
The SHOWCB macro without a block will return length fields according to the parameters specified on the
macro invocation in the order they are specified. Duplicates are permitted

Opcode Operand Remarks

[label] SHOWCB [AM=VSAM] Optional, no other values allowed

AREA=addr Address of return area

LENGTH=nr Size of return area in bytes

FIELDS=(keywd_list) List of keywords indicating which fields to return

4 [MF=] See the description of MF= here

Supported options for the FIELDS parameter are listed below:
Keyword Length Remarks

ACBLEN 4 Length of ACB in bytes

EXLLEN 4 Length of EXLST in bytes

RPLLEN 4 Length of RPL in bytes

All supported parameters and keywords are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=9 Length too small
 R15=8 Reason Code=n/a Invalid CBMR
 An attempt was made to update a CBMR with a field not previously created

SHOWCB ACB= macro
The SHOWCB macro with ACB=addr will return ACB-related fields according to the parameters specified
on the macro invocation in the order they are specified. Duplicates are permitted

Direct access to subfields in the ACB is discouraged. Use SHOWCB ACB=, TESTCB ACB= and/or
MODCB ACB= to inspect, test, and/or modify the ACB's content

Direct access to subfields in the CBMR is strongly discouraged

The SHOWCB ACB macro can be coded as follows:
Opcode Operand Remarks

[label] SHOWCB ACB=address Points SHOWCB to the ACB to be queried

[AM=VSAM] Optional, no other values allowed

AREA=addr Address of return area

LENGTH=nr Size of return area in bytes

[OBJECT=DATA/INDEX] For KSDS: select data or index component

FIELDS=(keywd_list) List of keywords indicating which fields to return

[MF=] See the description of MF= here

Supported options for the FIELDS parameter are listed below:
Keyword Length Remarks

ACBLEN 4 Length of ACB in bytes

AVSPAC 4 Available space in data/index (last 4 bytes). Derived from CTRAVSPAC

BFRFND 4 Nr of buffer hits for data/index including LSR (last 4 bytes)
Derived from CTRNBFRFND

BSTRNO 4 Initial nr of strings for AIX. Derived from ACBBSTNO

BUFND 4 Nr of data buffers specified in ACB. Derived from ACBBUFND

BUFNI 4 Nr of index buffers specified in ACB. Derived from ACBBUFNI

BUFNO 4 Number of data/index buffers allocated (last 4 bytes)
Derived from CTRNBUFNO

BUFNOL 4 Number of data/index buffers allocated for LSR processing (returns zero)

BUFRDS 4 Number of data/index buffer reads. Derived from CTRNBUFRDS

BUFSP 4 Buffer space in bytes specified in ACB. Derived from ACBBUFSP

BUFUSE 4 Number of data/index buffers actually in use. Derived from CTRNBUFUSE

CDTASIZE 8 Size of a compressed dataset (returns zero)

CINV 4 Block size for data/index. Derived from PFXBLKSZ

CIPCA 4 CI's in CA (returns zero)

DDNAME 8 DDNAME specified in ACB. Derived from ACBDDNM

ENDRBA 4 Highest used RBA. Derived from CTRENDRBA (last 4 bytes)

ERROR 4 Return code from last open/close operation. Derived from ACBERFLG

EXLLEN 4 Length of EXLST in bytes

Keyword Length Remarks

EXLST 4 Ptr to EXLST, zero if none. Derived from ACBEXLST

FS 4 Nr of data free CIs per CA (returns zero)

HALCRBA 4 Highest allocated data/index RBA
Derived from CTRHALCRBA (last 4 bytes)

HLRBA 4 For OBJECT=INDEX only, highest index block RBA
Derived from CTRHLRBA

KEYLEN 4 Length of key field. Derived from PFXKYLEN

LEVEL 8 Address (4 bytes) and length (4 bytes) of field containing zVSAM version
Derived from ACBVER

LOKEY 8 Address (4 bytes) of lowest key in the cluster + length (4 bytes) of key
Derived from CTRLOKEY@ and PFXKYLEN

LRECL 4 Maximum data/index record length. Derived from PFXRCLEN

MAREA 4 Message area (returns foxes)

MLEN 4 Message length (returns zero)

NCIS 4 Nr of Block splits in the data component. Zero for OBJECT=INDEX.
Derived from CTRNCIS (last 4 bytes)

NDELR 4 Nr of deleted records from the data component (last 4 bytes)
Zero for OBJECT=INDEX. Derived from CTRNDELR

NEXCP 4 Nr of I/O requests for the data/index components (last 4 bytes)
Derived from CTRNEXCP

NEXT 4 Nr of extents of the data/index components (returns 1)

NINSR 4 Nr of records inserted for the data component (last 4 bytes)
Zero for OBJECT=INDEX. Derived from CTRNINSR

NIXL 4 Nr of index levels for index component. Zero for OBJECT=DATA
Derived from highest non-foxes PFXBLVLn

NLOGR 4 Nr of records in the data/index (last 4 bytes). Derived from CTRNLOGR

NRETR 4 Nr of records retrieved from the data component (last 4 bytes).
Zero for OBJECT=INDEX. Derived from CTRNRETR

NSSS 4 Nr of control area splits for the data/index (returns zero)

NUIW 4 Nr of non-user writes (last 4 bytes). Derived from CTRNNUIW

NUPDR 4 Nr of updated records in the data/index components (last 4 bytes).
Derived from CTRNUPDR

PASSWD 4 Ptr to password, consisting of length (1 byte, binary) followed by the actual
password value. Derived from ACBPASSW

RELEASE 8 Address (4 bytes) and length (4 bytes) of field containing zVSAM version
Derived from ACBVER. Same as LEVEL

RKP 4 Relative Key Position, offset of key within logical record
Derived from PFXKYOFF

RMODE31 4 0=None, 1=Buff, 2=CB, 3=All. Derived from ACBOFLGS

RPLLEN 4 Length of RPL in bytes

Keyword Length Remarks

SDTASIZE 8 Uncompressed data size. Derived from CTRSDTASZ

SHRPOOL 4 SHRPOOL number. Derived from ACBSHRP

STMST 8 STCK of last close. Derived from CTRSTMST

STRMAX 4 Max nr of concurrently active strings (last 4 bytes).
Derived from CTRSTRMAX

STRNO 4 Max nr of allocated strings. Derived from ACBSTRNO

UIW 4 Nr of user writes for data/index (last 4 bytes). Derived from CTRNUIW

XAVCSPAC 8 AVCSPAC when value may exceed 4GB

XBFRFND 8 BFRFND when value may exceed 4GB

XBUFNO 8 BUFNO when value may exceed 4GB

XBUFUSE 8 BUFUSE when value may exceed 4GB

XBUFRDS 8 BUFRDS when value may exceed 4GB

XENDRBA 8 ENDRBA when value may exceed 4GB

XHALCRBA 8 HALCRBA when value may exceed 4GB

XHLRBA 8 HLRBA when value may exceed 4GB

XNCIS 8 NCIS when value may exceed 4GB

XNDELR 8 NDELR when value may exceed 4GB

XNEXCP 8 NEXCP when value may exceed 4GB

XNINSR 8 NINSR when value may exceed 4GB

XNLOGR 8 NLOGR when value may exceed 4GB

XNRETR 8 NRETR when value may exceed 4GB

XNUIW 8 NNUIW when value may exceed 4GB

XSTRMAX 8 STRMAX when value may exceed 4GB

XUIW 8 UIW when value may exceed 4GB

All supported parameters and keywords are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=1 ACBPFX or ACBXPFX are zero
 (X)HLRBA requested and OBJECT=DATA
 For fields that have 8-byte values (eg. XHLRBA) the 4-byte version is
 requested but the 1st four bytes are not zero
 CTRLOKEY@ is foxes for:
 non-KSDS
 KSDS index
 KSDS data but empty
 R15=4 Reason Code=9 Length too small
 R15=8 Reason Code=n/a Invalid CBMR or ACB
 An attempt was made to update a CBMR with a field not previously created

SHOWCB EXLST= macro
The SHOWCB macro with EXLST=addr will return EXLST-related fields according to the parameters
specified on the macro invocation in the order they are specified. Duplicates are permitted

Direct access to subfields in the EXLST is discouraged. Use SHOWCB EXLST=, TESTCB= EXLST and/or
MODCB EXLST= to inspect, test, and/or modify the EXLST's content

Direct access to subfields in the CBMR is strongly discouraged

The SHOWCB EXLST= macro can be coded as follows:
Opcode Operand Remarks

[label] SHOWCB EXLST=addr Points SHOWCB to the EXLST to be queried

[AM=VSAM] Optional, no other values allowed

AREA=addr Address of return area

LENGTH=nr Size of return area in bytes

FIELDS=(keywd_list) List of keywords indicating which fields to return

[MF=] See the description of MF= here

Supported options for the FIELDS parameter are listed below:
Keyword Length Remarks

ACBLEN 4 Length of ACB in bytes

EODAD 4 End-of-data exit routine address

EXLLEN 4 Length of EXLST in bytes

JRNAD 4 Supported here, but as it's not supported by other macros, zero is returned

LERAD 4 Logical error analysis routine address

RPLLEN 4 Length of RPL in bytes

SYNAD 4 Physical error analysis routine address

All supported parameters and keywords are implemented compatibly with IBM's VSAM implementation.
For details, please refer to the relevant IBM manual

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=9 Length too small
 R15=8 Reason Code=n/a Invalid CBMR or EXLST
 An attempt was made to update a CBMR with a field not previously created

SHOWCB RPL= macro
The SHOWCB macro with RPL=addr will return RPL-related fields according to the parameters specified on
the macro invocation in the order they are specified. Duplicates are permitted

Direct access to subfields in the RPL is discouraged. Use SHOWCB RPL=, TESTCB RPL= and/or MODCB
RPL= to inspect, test, and/or modify the RPL's content

Direct access to subfields in the CBMR is strongly discouraged

The SHOWCB RPL= macro can be coded as follows:
Opcode Operand Remarks

[label] SHOWCB RPL=addr Points SHOWCB to the RPL to be queried

[AM=VSAM] Optional, no other values allowed

AREA=addr Address of return area

LENGTH=nr Size of return area in bytes

FIELDS=(keywd_list) List of keywords indicating which fields to return

[MF=] See the description of MF= here

Supported options for the FIELDS parameter are listed below:
Keyword Length Remarks

ACB 4 Pointer to ACB

ACBLEN 4 Length of ACB in bytes

AIXPC 4 Alternate index pointer count. Derived from PFXAIXN

AREA 4 Pointer to record buffer

AREALEN 4 Size of record buffer in bytes

ARG 4 Pointer to last used search argument field

ECB 4 Pointer to user-supplied ECB

EXLLEN 4 Length of EXLST in bytes

FDBK 4 Feedback code for the last request

FTNCD 4 Function code

KEYLEN 4 Length of key, for use with OPTCD=GEN

MSGAREA 4 Pointer to message area (returns foxes)

MSGLEN 4 Length of message area (returns zero)

NXTRPL 4 Pointer to next RPL, if any

RBA 4 4-byte RBA of last record processed (ESDS ony, otherwise zero)

RECLEN 4 Length of current record

RPLLEN 4 Length of RPL in bytes

TRANSID 4 Transaction id (returns foxes)

XRBA 8 8-byte RBA of last record processed (ESDS only, otherwise zero)

All supported parameters and keywords are implemented compatibly with IBM's VSAM implementation
For details, please refer to the relevant IBM manual

Return (R15) and Reason (R0) Codes:
 R15=0 Reason Code=n/a Successful
 R15=4 Reason Code=1 AIXPC or RPLDACB are zero
 R15=4 Reason Code=9 Length too small
 R15=8 Reason Code=n/a Invalid CBMR or RPL
 An attempt was made to update a CBMR with a field not previously created

TESTCB ACB= macro
The TESTCB macro with ACB=addr will test ACB-related fields according to the parameters specified on
the macro invocation. Only a single test can be specified on each TESTCB invocation. TESTCB returns a
PSW condition code of 8=Equal when the specified test is met, 7=NotEqual otherwise.

Direct access to subfields in the ACB is discouraged. Use SHOWCB ACB=, TESTCB ACB= and/or
MODCB ACB= to inspect, test, and/or modify the ACB's content.

Direct access to subfields in the CBMR is strongly discouraged

The TESTCB ACB macro can be coded as follows:
Opcode Operand Remarks

[label] TESTCB ACB=address Points TESTCB to the ACB to be tested

[AM=VSAM] Optional, no other values allowed

ERET=addr Address of error handling routine

[OBJECT=DATA/INDEX] For KSDS: select data or index component

ATRB=(keywd_list)
ATRB=COMPRESS

ATRB=UNQ
ATRB=XADDR

List of keywords indicating attributes to test
Compression on? Always false for zVSAM.
Path is defined on unique key?
Extended format? Always true for zVSAM.

OFLAGS=OPEN Opened successfully?

OPENOBJ=PATH/BASE/AIX ACB represents Path/Base/AIX?

ACBLEN=nr length of ACB in bytes

AVSPAC=nr available space in bytes

BSTRNO=nr Initial nr of strings

BUFND=nr Nr of data buffers

BUFNI=nr Nr of index buffers

BUFNO=nr nr of I/O Buffers

BUFSP=nr Buffer space in bytes

CINV=nr Control interval size / Block size in bytes

DDNAME=string DDNAME

ENDRBA=nr High water mark XLRA

ERROR=nr Error code of last error

EXLST=adr EXLST address

FS=nr Free Block per 100

KEYLEN=nr Length of key field

LRECL=nr Logical Record Length

MAREA=adr Message area address

MLEN=nr Length of message area in bytes

NCIS=nr Nr of Block splits

NDELR=nr Nr of deleted records

Opcode Operand Remarks

NEXCP=nr Nr of I/O requests

NEXT=nr Nr of extents

NINSR=nr Nr of records inserted

NIXL=nr Nr of index levels

NLOGR=nr Nr of records

NRETR=nr Nr of records retrieved

NSSS=nr Nr of control area splits. Foxes.

NUPDR=nr Nr of updates applied

PASSWD=adr Ptr to 1-byte length followed by password

RKP=nr Offset of key field within record

SHRPOOL=nr SHRPOOL number

STMST=adr Poijnter to system timestamp field

STRNO=nr Max. nr of parallel requests

[MF=I or omitted] Use standard form of TESTCB ACB

[MF=(L[,addr][,label])] Use list form of TESTCB ACB

[MF=(E,addr)] Use execute form of TESTCB ACB

[MF=(G,addr,[label])] Use generate form of TESTCB ACB

Supported options for the ATRB parameter are listed below:
Keyword Remarks

ESDS Component is an ESDS?

KSDS Component is a KSDS?

LDS Component is an LDS?

RRDS Component is a RRDS?

REPL Always false for zVSAM.

SPAN Component may hold segmented records

SSWD Always false for zVSAM.

VRRDS Variable-length RRDS?

VESDS Variable-length ESDS? (zVSAM extension)

WCK Always false for zVSAM.

All supported parameters and keywords are implemented compatibly with IBM's VSAM implementation.
For details, please refer to the relevant IBM manual.

For ease of access a short summary can be found in the addenda here

TESTCB EXLST= macro
The TESTCB macro with EXLST=addr will test EXLST-related fields according to the parameters specified
on the macro invocation. Only a single test can be specified on each TESTCB invocation
TESTCB returns a PSW condition code

Direct access to subfields in the EXLST is discouraged. Use SHOWCB EXLST=, TESTCB EXLST= and/or
MODCB EXLST= to inspect, test, and/or modify the EXLST's content.

Direct access to subfields in the CBMR is strongly discouraged.

The TESTCB EXLST macro can be coded as follows:
Opcode Operand Remarks

[label] TESTCB EXLST=addr Points TESTCB to the EXLST to be tested

[AM=VSAM] Optional, no other values allowed

ERET=addr Address of error handling routine

EODAD=0
EODAD=addr[,mod]

End-of-data exit routine address

JRNAD=0
JRNAD=addr[,mod]

Not supported. Keyword is flagged with a warning message

UPAD=0
UPAD=addr[,mod]

Not supported. Keyword is flagged with a warning message

RLSWAIT=0
RLSWAIT=addr[,mod]

Not supported. Keyword is flagged with a warning message

LERAD=0
LERAD=addr[,mod]

Logical error analysis routine address

SYNAD=0
SYNAD=addr[,mod]

Physical error analysis routine address

EXLLEN=nr Size of EXLST in bytes

[MF=I or omitted] Use standard form of TESTCB EXLST

[MF=(L[,addr][,label])] Use list form of TESTCB EXLST

[MF=(E,addr)] Use execute form of TESTCB EXLST

[MF=(G,addr,[label])] Use generate form of TESTCB EXLST

All supported parameters and keywords are implemented compatibly with IBM's VSAM implementation.
For details, please refer to the relevant IBM manual

TESTCB RPL= macro
The TESTCB macro with RPL=addr will test RPL-related fields according to the parameters specified on the
macro invocation. Only a single test can be specified on each TESTCB invocation. TESTCB returns a PSW
condition code of 8=Equal when the specified test is met, 7=NotEqual otherwise.

Direct access to subfields in the RPL is discouraged. Use SHOWCB RPL, TESTCB RPL and/or MODCB
RPL to inspect, test, and/or modify the RPL's content.

Direct access to subfields in the CBMR is strongly discouraged.

The TESTCB RPL macro can be coded as follows:
Opcode Operand Remarks

[label] TESTCB RPL=addr Points TESTCB to the RPL to be tested

[AM=VSAM] Optional, no other values allowed

ERET=addr Address of error handling routine

OPTCD=(keywd_list) List of keywords indicating attributes to test

AIXFLAG=AIXPKP Using primary keys

AIXPC=nr Nr of index pointers in use

FTNCD=nr Reflects the condition of the upgrade set

IO=COMPLETE

ACB=addr

AREA=addr

AREALEN=addr

ARG=addr

ECB=addr

FDBK=nr

KEYLEN=nr Length of key field

RECLEN=nr Logical Record Length

MSGAREA=adr Message area address

MSGLEN=nr Length of message area in bytes

NXTRPL=addr

RBA=nr

RPLLEN=nr

TRANSID=nr

[MF=I or omitted] Use standard form of TESTCB RPL

[MF=(L[,addr][,label])] Use list form of TESTCB RPL

[MF=(E,addr)] Use execute form of TESTCB RPL

[MF=(G,addr,[label])] Use generate form of TESTCB RPL

Supported options for the OPTCD parameter are the same as those available on the RPL macro

All supported parameters and keywords are implemented compatibly with IBM's VSAM implementation.
For details, please refer to the relevant IBM manual

Overview of differences with IBM VSAM:

RBA=nr – zVSAM supports this keyword only for ESDS. For any other type of cluster a value of foxes will
be assumed by default

Catalog management
This is where all meta-data about the zVSAM components are kept and where the relations between zVSAM
components are defined. Catalogs are currently created as static assembled modules
Extended catalogs contained in datasets will be considered in a future release

The catalog will hold at least:
- file name
- pointer to index file
- pointers to all related AIX clusters
- LRECL
- record type (F, V, FS, VS)
- type of component (ESDS, KSDS, RRDS, AIX)
- freeblocks (during load, between blocks)
- freespace (during load, within blocks)
- Physical Block size (aka CI-size, 512 bytes to 16MB)

For a complete list of catalog components please see the “z390_zVSAM_Catalog_User_Guide”

http://www.z390.info/development/zVSAM/z390_zVSAM_Catalog_User_Guide.pdf

Physical structure of the files

Basic Concepts

Files, Blocks, Records
The logical unit of access or storage is the record. Yet the unit for any given I/O operation is the block.
Block sizes may vary from 512 bytes to 16MB. Each block holds up to 255 records. For any given cluster
component, choosing an appropriate block size is important. Block size can greatly affect not only
performance, but also both internal and external storage consumption

A cluster consists of one or more files that belong together and should be managed together. Whether you
take a backup, perform a restore, or perform other administrative tasks, the files that make up a cluster should
be managed alike. When creating a backup copy of a cluster or restoring a cluster, make sure no other
processes try to access the data at the same time

zVSAM implements a number of checks and balances to prevent inadvertent access to data that may have
been compromised. Names and locations of files are managed. Tampering with files or file attributes may
render the cluster unusable

As a result, it is not possible to rename a zVSAM cluster or file. Unload and reload your cluster in order to
move the data or to assign a different name to cluster or file

Just like files in a cluster belong together and should be managed together, clusters in a sphere are logically
connected and should be managed together. Again, failing to manage the files in a correct and
comprehensive manner may render your data inaccessible

Cluster types and Cluster Components
Each cluster consists of a data component and an index component as follows:

Data and Index Components per Cluster type

Cluster type Index content

ESDS Index on XRBA

KSDS Index on key value

RRDS Index on RRN

AIX Index on alternate key value

Record Formats
In zVSAM we support the following record formats:

Record Formats

Format Properties

F Fixed. All records have the same length
Records never span a Block boundary

FS Fixed Spanned. All records have the same length
Records expected to span a Block boundary

V Variable. Records have varying lengths
Records never span a Block boundary

VS Variable Spanned. Records have varying lengths
Records may or may not span a Block boundary

For ESDS, KSDS, and RRDS all record types are supported.
For AIX only F and VS record formats are supported: F for unique, and VS for non-unique indexes

Supported Record Formats

Cluster Type F FS V VS

ESDS Y Y Y* Y*

KSDS Y Y Y Y

RRDS Y Y* Y Y*

AIX - unique Y N N N

AIX - non-unique N N N Y

* zVSAM extension

For a unique AIX each record holds an alternate key value plus the primary key (KSDS) or XLRA (ESDS)
of the associated record in the cluster's data component. This fixed configuration dictates a record type of F

For a non-unique AIX each record holds an alternate key value and as many primary keys (KSDS) or
XLRAs (ESDS) of associated records in the cluster's data component as there are records holding that
specific alternate key value. The table of primary keys may vary in length from 1 to very large numbers. No
block size is guaranteed to be large enough to hold the largest possible index record, therefore a record type
of VS is mandated. When a non-unique index record needs to be split into segments, no primary key value or
XLRA is ever split; i.e. only an exact number of these reside within a single segment of the record

Supported Index-types

Cluster Type Primary - Unique AIX - unique AIX - Non-unique

ESDS Y* Y Y

KSDS Y Y Y

RRDS Y* N N

* zVSAM extension

File Structure

Physical files
All zVSAM data is stored in physical files, as defined to the operating system
Each component consists of one file. This file is formatted as a zVSAM file, the structure of which is
explained in the next set of chapters

Please note: the hosting operating system may impose a limit on physical file size and not every host OS
supports a physical file spanning a volume boundary of the storage device(s). Therefore, to support clusters
that exceed the maximum size of a single physical file, in the future we may need to support clusters that
consist of multiple files

Structure of physical files

Every zVSAM file has a block size. The block being the basic unit of I/O. The first block of every file is the
prefix block, which is always 4096 bytes in size. The prefix block holds information about the cluster, its
data, and its structure
Data in the prefix block are not accessible to user programs. However, selected fields in the prefix block can
be queried using a SHOWCB ACB= request

All Data and Index blocks in the file have a user-defined blocksize (DATABLOCKSIZE= and
INDEXBLOCKSIZE=). The file is assumed to logically begin with the first block after the prefix block
There are 5 types of blocks that may occur in zVSAM files:
 1) Prefix block – one for each file, being the first 4096 bytes of every file
 2) Spacemap block – used to manage free space in the file
 3) Data block – used to hold user data, or AIX data records (in an AIX only)
 4) Index block – used to hold index information
 5) ELIX block – used to index segmented (read: large) non-unique AIX records

Every block has an internal structure consisting of a block header, a list of record pointers, a block body and
a block footer. The block header and footer have a fixed structure. The list of record pointers has a variable
length. The block body contains record data and/or free space
Each of the 5 block types is explained in more detail below

Block Header Structure
Every block has a block header (ZVSAMHDR). All block headers have the same structure

BHDRSEQ# is incremented by one every time the block is written out to the file
The footer area contains a comparable field: BFTRSEQ#. Together they guard against incomplete writes

BHDRXLVL indicates the index level. Zero is the leaf level. Index blocks are chained by level. That is, for
every index level in use there is a pair of pointers in the prefix block (PFXBLVLn/PFXELVLn) that starts
and ends the chain for that level

BHDRSELF contains the block's own XLRA. This helps to guard against misdirected reads and/or writes.
BHDRNEXT/BHDRPREV point to the next and previous block on the chain. Which chain this is, depends
on the BHDRFLAG setting, and, if this is an index block, by the BHDRXLVL value
For the prefix block, these two fields are set to foxes

Segmented records are a special case. Segments of a segmented record never share their block with other
data. The block holding the first segment is part of the data chain. A block holding a non-first segment is part
of the segment chain. A block that holds a record's first segment has an SPX pointing to the block holding
the next segment. Subsequent segments are retrieved by following the SPXs to the last segment of the record

The Segment chain starting at PFXBSEGM and ending at PFXESEGM has no role in processing a spanned
dataset but just provides an extra integrity check

Block Footer Structure
Every block has a block footer zVSAMFTR). All block footers have the same structure

BFTRSEQ# is incremented by one every time the block is written out to the file
The header area contains a comparable field: BHDRSEQ#. Together they guard against incomplete writes

Prefix Block
The prefix block (ZVSAMPFX) consists of the first 4096 bytes of every physical file. It contains meta-data
defining the file and its attributes. It also contains various counters

The prefix block consists of a block header immediately followed by the prefix area
The prefix block also contains other data fields, these are addressed from the prefix area
The prefix block ends with a block footer. A record pointer list is not present on the prefix block

There are various pointer fields in the prefix area. These point to fields allocated elsewhere in the prefix
block. Their exact addresses on the prefix block may vary
The PFXDPAT@, PFXDNAM@, PFXXPAT@, PFXXNAM@ all point to a halfword-prefixed string
PFXDVOL@ and PFXXVOL@ contain foxes (future option)

The Counters area (ZVSAMCTR) directly follows the Prefix area, it is doubleword aligned
This area is expected to move into the catalog dataset in a future release

The overall structure of the prefix block would look something like this (areas not to scale):

Prefix Block chain summary
The following table summarizes the way that blocks in the file are chained from the prefix block
The prefix block doesn't reside on any chain

Block Type Beginning of chain End of chain

Prefix foxes foxes

Spacemap PFXBMAP PFXEMAP

Data (in use and free) PFXBDATA PFXEDATA

Data (non-first segments) PFXBSEGM PFXESEGM

Index (in use and free) PFXBLVLn PFXELVLn

Spacemap Blocks
Spacemap blocks (ZVSAMMAP) are used to manage available free space in a component. Each spacemap
block has a size that matches the blocksize of all other blocks (except possibly the prefix block) in the
component
A component will hold as many spacemap blocks as needed to map all of its allocated blocks, including all
spacemap blocks but excluding the prefix block. Whenever a single spacemap block is not enough, the
spacemap blocks are chained together by means of the BHDRNEXT/BHDRPREV pointers in the block
header area. The spacemap chain starts/ends from the prefix block, fields PFXBMAP/PFXEMAP

When a single spacemap block suffices, PFXBMAP and PFXEMAP will both point to that block
Each spacemap block consists of a block header immediately followed by the spacemap area, which in turn
is followed directly by the block footer. No free space exists on a spacemap block. Thus, a spacemap block
may indicate blocks that do not exist in the dataset. The bit settings for blocks beyond the PFXHXLRA
should all be zero to indicate an unallocated block. zVSAM is aware that any block beyond PFXHXLRA
needs to be created and initialized before it can be allocated

Conceptually, the overall structure of a spacemap block would look something like this (areas not to scale):

Record Pointer List Structure (RPTR)
Every block that contains data records contains a record pointer list (ZVSAMRPT). Records are accessible
only through their Record Pointer or RPTR. Every entry in the list corresponds with a single record on the
block. The last byte of the record's XLRA is the index into the Record Pointer List. Index value of X'00' is
reserved for block pointers; values X'01' through X'FF' inclusive are usable as RPTR index values. The
difference of 1 always needs to be taken into account when indexing the RPTR list

The RPTR list always follows the block header directly
The number of entries on the RPTR list varies with the number of records stored on the block (BHDR#REC)
and is terminated with an entry of foxes to mark the end of the list.

When RPTR_END is set, RPTRREC@ is set to foxes
RPTR_ACT and RPTR_MTY are mutually exclusive. Either one must be set, otherwise the RPTR list is
compromised and data access will fail
RPTR_MTY indicates an empty RRDS slot

Segment Prefix (SPX)
All segments begin with a segment prefix (ZVSAMSEG)
The first segment is on the Data chain and subsequent segments are retrieved via SPXBNEXT
The flag SPXSEGCC indicates the first, middle or last segments

Data Blocks

Data Block Structure (SPANNED=NO)
Assume we have a cluster with three data blocks holding records. The blocks are on the data chain as
outlined in the picture below. Please note that all depicted pointers are block pointers. Each pointer thus
originates with the indicated field, and ends at the block it points to. The location where the arrows attach has
no meaning since it's a block pointer

Data Block Structure (SPANNED=YES)
Now suppose we have a cluster with three data blocks, the first block holding two unsegmented records, the
second block holding the first segment of a record consisting of three segments and the third block holding
the first segment of a record consisting of two segments
In the picture we show the data chain as a solid line (as in the picture above), we show the segment chain as a
dotted line, and we show the SPX pointers as a fat line
The picture shows the prefix area's pointer to start/end block of both the data chain and the segment chain
It also shows the first and second block on each chain pointing to one another. Same thing for the second and
third block on each chain

All depicted pointers are block pointers
Each pointer originates with the indicated field, and ends at the block it points to
The location where the arrows attach has no meaning since it's a block pointer

Data Block
Each record has an RPTR block, they are created after the Block Header
In addition to the offset, the RPTR contains flags to identify the type and status of each record
RPTR_END marks the end of records in this block

The records are placed in reverse order in the block to consolidate free space at the centre

It is possible to reserve an amount of freespace at load time which also applies if a block is split
It is specified in the catalog as DATAFREESPACE=nn, where nn is a percentage of the available space
Only a fixed non-spanned KSDS can specify free space

For all types of fixed non-spanned datasets, the available space may not be a multiple of the data record size
resulting in unusable space. To correct this use DATAADJUST=YES which will calculate an optimal
blocksize less than the specified one

AIX Blocks

AIX Block Structure (Unique)

AIX Block (Unique)

AIX unique records have the following format:

AIX on ... Record Format

KSDS AIX key followed by primary key

ESDS AIX key followed by XRBA(8)

AIX Block Structure (Non-unique)

AIX Block (Non-unique and not segmented)

AIX non-unique non-segmented records have the following format:

AIX on ... Record Format

KSDS AIX key, an element count n(4) followed by n primary keys

ESDS AIX key, an element count n(4) followed by n XRBAs(n*8)

AIX Block (Non-unique and segmented)

Each segment contains a whole number of elements
AIX non-unique segmented records have the following formats:

AIX on ... Record Format of FIRST segment

KSDS SPX, AIX key, an element count(4) which is the total no. of elements in all segments
The actual number of primary keys in this segment can be calculated from SPXSEGLN

ESDS SPX, AIX key, an element count(4) which is the total no. of elements in all segments
The actual number of XLRAs in this segment can be calculated from SPXSEGLN

AIX on ... Record Format of MIDDLE or LAST segments

KSDS SPX and a number of primary keys
The actual number of primary keys in this segment can be calculated from SPXSEGLN

ESDS SPX and a number of XLRAs
The actual number of XLRAs in this segment can be calculated from SPXSEGLN

ELIX Block
A single ELIX block is created for each non-unique AIX record that is segmented
It has the same blocksize as a Data record

zVSAM lifts the current IBM restriction of 32K elements in a non-unique AIX record, because of this there
may be many segments to read to find an element to delete or an insertion point for a new record

The ELIX Block provides an extra index on the segments and contains the highest element in each segment
As there is currently only one ELIX Block per AIX key this places a limit on the number of elements

When a non-unique AIX is built zREPRO will issue a message on the log like this:
 zREPRO AIX MAX ELEMENT LIMIT 87654
If the number of elements is too low then rebuild the AIX with a larger blocksize

IBM does not maintain elements in any particular order but for the ELIX structure to work zVSAM will
maintain elements in sequence

The ELIX record has the following format:

AIX on ... Record Format

KSDS Highest Primary key followed by the XLRA of the segment (always record 1)

ESDS Highest XRBA followed by the XLRA of the segment (always record 1)

Index Blocks
Each record has an RPTR block, they are created after the Block Header
In addition to the offset, the RPTR contains flags to identify the type and status of each record
RPTR_END marks the end of records in this block
The records are placed in reverse order in the block to consolidate free space at the centre

For Level 0 each record is the key (KSDS), XRBA (ESDS) or RRN (RRDS) and is followed by an XLRA
The XLRA is a record pointer to the Data block

For other levels, each record is the highest key, XRBA or RRN followed by an XLRA
The XLRA is a block pointer to the previous level

As each index record is a fixed size it is recommended to specify INDEXADJUST=YES to avoid unusable
free space

Index Block Structure: Single level
This example shows an index of only one block, holding two record pointers

Index Block Structure: Two Levels
This example shows the index after adding three more record pointers, causing the only index block to
overflow and split. Now there are two leaf blocks, still on the LVL0 chain, and a new root block has been
created on the LVL1 chain

Index Block Level 0

Index Block other levels

It is possible to reserve an amount of freespace at load time which also applies if a block is split
It is specified in the catalog as INDEXFREESPACE=nn, where nn is a percentage of the available space
Only a fixed non-spanned KSDS can specify free space

For all types of fixed non-spanned datasets, the available space may not be a multiple of the index record size
resulting in unusable space. To correct this use INDEXADJUST=YES which will calculate an optimal
blocksize less than the specified one

Structure and Functions by dataset type

KSDS Fixed non-Spanned
F-type records are conceptually stored one after another, filling the block until no space is left.
When the remaining free space is insufficient to accommodate another record, that free space remains
unusable. Unusable space can be eliminated by building the dataset with DATAADJUST=YES
Blocks can be allocated with free space for adds (DATAFREESPACE=nn%), when the block is full the
block will be split and any new block will have nn% free space

Format:

Function Notes

Add Yes

Update Yes, the primary key must not be changed

Delete Yes

Length change n/a

Access by: Primary key or AIX key
(X)RBA not yet implemented

KSDS Fixed Spanned
FS-type records are conceptually stored one after another, using a block for each segment and starting each
record on a new block. Record size is expected to exceed block size, so the record is split into segments, the
first segment is created to fill an entire block, and the rest of the record goes into one or more secondary
segments which are stored on the next blocks
Each segment is preceded by a Segment Prefix (SPX, marked in yellow)

zVSAM extension: The primary key and any AIX keys need not be in the first segment

Below we show an example where each record requires three segments:

Function Notes

Add Yes

Update Yes, the primary key must not be changed

Delete Yes

Length change n/a

Access by: Primary key or AIX key
(X)RBA not yet implemented

KSDS Variable non-Spanned
V-type records are conceptually stored one after another, filling the block until no space is left
Every record is preceded by a Record Length Field (RLF, marked in grey)

When remaining free space is insufficient to accommodate another record, that free space remains
unallocated (marked in blue) and the record is placed on the next block

Below we show an example showing how various numbers of records might fit into the blocks

Function Notes

Add Yes

Update Yes, the primary key must not be changed

Delete Yes

Length change Yes
When a record is shortened it must not affect the primary key
or any AIX key

Access by: Primary key or AIX key
(X)RBA not yet implemented

KSDS Variable Spanned
VS-type records are conceptually stored one after another, filling the block until no space is left
Every record is preceded by a Record Length Field (RLF, marked in grey)
When remaining free space is insufficient to accommodate another record, that free space remains
unallocated (marked in blue) and the record is placed on the next block

Only if the record size exceeds the usable block size is the record is split into segments and each segment is
prefixed with a Segment Prefix. The first segment is created to fill an entire block, and the rest of the record
goes into one or more secondary segments which are stored on the next blocks
Each segment is preceded by a Segment Prefix (SPX, marked in yellow)

zVSAM extension: The primary key and any AIX keys need not be in the first segment

Below we show an example showing how various numbers of records might fit into the blocks of the file,
or how a single record might occupy multiple blocks of the file

Function Notes

Add Yes

Update Yes, the primary key must not be changed

Delete Yes

Length change Yes
When a record is shortened it must not affect the primary key
or any AIX key

Access by: Primary key or AIX key
(X)RBA not yet implemented

ESDS Fixed non-Spanned
F-type records are conceptually stored one after another, filling the block until no space is left.
When the remaining free space is insufficient to accommodate another record, that free space remains
unusable. Unusable space can be eliminated by building the dataset with DATAADJUST=YES

Format:

Function Notes

Add Yes, but only to the end of the dataset

Update Yes

Delete No

Length change n/a

Access by: (X)RBA or AIX key

ESDS Fixed Spanned
FS-type records are conceptually stored one after another, using a block for each segment and starting each
record on a new block. Record size is expected to exceed block size, so the record is split into segments, the
first segment is created to fill an entire block, and the rest of the record goes into one or more secondary
segments which are stored on the next blocks
Each segment is preceded by a Segment Prefix (SPX, marked in yellow)

zVSAM extension: Any AIX keys need not be in the first segment

Below we show an example where each record requires three segments:

Function Notes

Add Yes, but only to the end of the dataset

Update Yes

Delete No

Length change n/a

Access by: (X)RBA or AIX key

ESDS Variable non-Spanned
V-type records are conceptually stored one after another, filling the block until no space is left
Every record is preceded by a Record Length Field (RLF, marked in grey)

When remaining free space is insufficient to accommodate another record, that free space remains
unallocated (marked in blue) and the record is placed on the next block

This dataset type is a zVSAM extension

Below we show an example showing how various numbers of records might fit into the blocks

Function Notes

Add Yes, but only to the end of the dataset

Update Yes

Delete No

Length change No

Access by: (X)RBA or AIX key

ESDS Variable Spanned
VS-type records are conceptually stored one after another, filling the block until no space is left
Every record is preceded by a Record Length Field (RLF, marked in grey)
When remaining free space is insufficient to accommodate another record, that free space remains
unallocated (marked in blue) and the record is placed on the next block

Only if the record size exceeds the usable block size is the record is split into segments and each segment is
prefixed with a Segment Prefix. The first segment is created to fill an entire block, and the rest of the record
goes into one or more secondary segments which are stored on the next blocks
Each segment is preceded by a Segment Prefix (SPX, marked in yellow)

This dataset type is a zVSAM extension
zVSAM extension: Any AIX keys need not be in the first segment

Below we show an example showing how various numbers of records might fit into the blocks of the file,
or how a single record might occupy multiple blocks of the file

Function Notes

Add Yes, but only to the end of the dataset

Update Yes

Delete No

Length change No

Access by: (X)RBA or AIX key

RRDS Fixed non-Spanned
F-type records are conceptually stored one after another, filling the block until no space is left.
When the remaining free space is insufficient to accommodate another record, that free space remains
unusable. Unusable space can be eliminated by building the dataset with DATAADJUST=YES

An RRDS consists of slots (RRNs) which may or may not contain a record
Empty slots are initially binary zeros with RPTR_MTY set

Function Notes

Add Yes, but only to the end of the dataset

Update Yes

Delete Yes, slots may not be deleted. RPTR_MTY is set

Length change n/a

Access by: RRN

RRDS Fixed Spanned
FS-type records are conceptually stored one after another, using a block for each segment and starting each
record on a new block. Record size is expected to exceed block size, so the record is split into segments, the
first segment is created to fill an entire block, and the rest of the record goes into one or more secondary
segments which are stored on the next blocks
Each segment is preceded by a Segment Prefix (SPX, marked in yellow)

An RRDS consists of slots (RRNs) which may or may not contain a record
Empty slots are initially binary zeros with RPTR_MTY set

This dataset type is a zVSAM extension

Below we show an example where each record requires three segments:

Function Notes

Add Yes, but only to the end of the dataset

Update Yes

Delete Yes, slots may not be deleted. RPTR_MTY is set

Length change n/a

Access by: RRN

RRDS Variable non-Spanned
V-type records are conceptually stored one after another, filling the block until no space is left
Every record is preceded by a Record Length Field (RLF)

An RRDS consists of slots (RRNs) which may or may not contain a record
Empty slots consist of a dummy RLF containing X'00000004' with RPTR_MTY set, these are shown
in green in the diagram. Non-empty slots have a grey RLF

When remaining free space is insufficient to accommodate another record, that free space remains
unallocated (marked in blue) and the record is placed on the next block

Below we show an example showing how various numbers of records might fit into the blocks

Function Notes

Add Yes, but only to the end of the dataset

Update Yes

Delete Yes, slots may not be deleted. RPTR_MTY is set
The record is replaced by a dummy RLF and the space is reclaimed

Length change Yes

Access by: RRN

RRDS Variable Spanned
VS-type records are conceptually stored one after another, filling the block until no space is left
Every record is preceded by a Record Length Field (RLF)

An RRDS consists of slots (RRNs) which may or may not contain a record
Empty slots consist of a dummy RLF containing X'00000004' with RPTR_MTY set, these are shown
in green in the diagram. Non-empty slots have a grey RLF

When remaining free space is insufficient to accommodate another record, that free space remains
unallocated (marked in blue) and the record is placed on the next block

When a record length exceeds the available space in a block the record is split into segments, the first
segment is created to fill an entire block, and the rest of the record goes into one or more secondary segments
which are stored on the next blocks
Each segment is preceded by a Segment Prefix (SPX, marked in yellow)

This dataset type is a zVSAM extension

Below we show an example showing how various numbers of records might fit into the blocks

Function Notes

Add Yes, but only to the end of the dataset

Update Yes

Delete Yes, slots may not be deleted. RPTR_MTY is set
The record is replaced by a dummy RLF and the space is reclaimed
For segmented records, the freed blocks are marked as available

Length change Yes

Access by: RRN

Logical processes for RPL-based requests

POINT function

GET function
Prefix counter field CTRNEXCP needs to be incremented whenever a block is needed that does not yet
reside in a buffer. If buffers need to be written out to make room for a block that needs to be read, then the
CTRNEXCP counter needs to be incremented as well.
Prefix counter field CTRNRETR needs to be incremented for every block accessed, whether it needs to be
read, or already resides in a buffer does not matter for this count field
If buffers need to be written out in order to allocate a buffer for a block that needs to be read, then prefix
counter CTRNNUIW needs to be incremented

PUT function
Prefix counter field CTRAVSPAC must be updated. When consuming free space to allocate a new record,
reduce CTRAVSPAC with space consumed. When allocating a new block (or splitting an existing block) add
the blocksize – (block header, block footer, RPTR area) and reduce with amount used up (record length,
including RDW/SPX and RPTR). When lengthening a record, subtract the difference; when shortening a
record, add the difference
Prefix counter fields CTRHALCRBA and CTRENDRBA should be updated whenever a record is added
beyond the current value of these fields. CTRENDRBA also should be updated in case the last record in the
component is lengthened
Prefix counter field CTRNCIS should be incremented whenever a block needs to be split
Prefix counter field CTRNEXCP needs to be incremented whenever a block needs to be written out. This
occurs when the cluster was opened with MACRF=NDF. With MACRF=DFR no writes are forced and no
EXCP needs to be counted

Prefix counter fields CTRNINSR and CTRNLOGR need to be incremented whenever a new record is added
to the component
Prefix counter field CTRNRETR needs to be incremented for every block accessed, whether it needs to be
read, or already resides in a buffer does not matter for this count field. For basic put operation this is
irrelevant, but for updating an index or an AIX reads may be needed and should be counted for the
component being read
When an existing record is updated, then CTRNUPDR needs to be incremented
When adding a record the record length (including SPX/RDW, but excluding RPTR) needs to be added to
the prefix counter field CTRSDTASZ. When a record is updated to a different length, then the difference in
length needs to accounted into the CTRSDTASZ field.
When a user write is forced then the prefix counter field CTRNUIW needs to be incremented. This happens
when a put is issued to a cluster that was opened with MACRF=NDF. For clusters opened with
MACRF=DFR writing is done by zVSAM when the buffer is needed for a different block. These writes are
counted in the CTRNNUIW field
The prefix counter field CTRAVGRL contains the value of CTRSDTASZ / CTRNLOGR rounded up to the
nearest integer. The field should be updated whenever either or both of the input values are changed
The prefix counter field CTRLOKEY@ is the offset to a length and a value of PFXKYLEN bytes
The value should be updated whenever a record is inserted that has a lower key than the current lowest key.

ERASE function
Prefix counter field CTRNDELR should be incremented for every successful erase operation
Prefix counter field CTRNEXCP needs to be incremented whenever a block is needed that does not yet
reside in a buffer. If buffers need to be written out to make room for a block that needs to be read, then the
CTRNEXCP counter needs to be incremented as well
Prefix counter field CTRNLOGR needs to be decremented for every successful erase operation
Prefix counter field CTRNRETR needs to be incremented for every block accessed, whether it needs to be
read, or already resides in a buffer does not matter for this count field. For basic erase operation this is
irrelevant, but for updating an index or an AIX reads may be needed and should be counted for the
component being read
When erasing a record the record length (including SPX/RDW, but excluding RPTR) needs to be subtracted
from the prefix counter field CTRSDTASZ
When a user write is forced then the prefix counter field CTRNUIW needs to be incremented. This happens
when an erase is issued to a cluster that was opened with MACRF=NDF. For clusters opened with
MACRF=DFR writing is done by zVSAM when the buffer is needed for a different block. These writes are
counted in the CTRNNUIW field
The prefix counter field CTRAVGRL contains the value of CTRSDTASZ / CTRNLOGR rounded up to
nearest integer. The field should be updated after every successful erase operation
The prefix counter field CTRLOKEY@ is the offset to a length and value of PFXKEYLN bytes
The value should be updated whenever the record is erased with the current lowest key
Prefix counter field CTRNEXCP needs to be incremented whenever a block is needed that does not yet
reside in a buffer

CHECK function

ENDREQ function

VERIFY function

Locking

Addenda

API for ACB-based interfaces

TESTCB ACB macro parameters

All supported parameters are implemented compatibly with IBM's VSAM implementation.
For details, please refer to the relevant IBM manual.

For ease of access a short summary follows here:
ACB=addr required to indicate the ACB to be tested

All other keywords function the same way that they do on a SHOWCB ACB request. Please see the
preceding chapter for details here

MF=I or omitted
 Specifies the standard form of the TESTCB to generate an inline CBMR and an inline call to
 the CBMR handler.

MF=L Specifies the list form of the TESTCB macro which generates an inline CBMR but no call
 to the CBMR handler.

MF=(L,addr) Specifies the list form of the TESTCB macro to generate a remote CBMR at the indicated
 location. No call to the CBMR handler is generated.

MF=(L,addr,label)
 Same as MF=(L,addr) but label will be equated to the length of the CBMR.

MF=(E,addr) Specifies the execute form of the TESTCB macro to generate code that will dynamically
 modify the CBMR at the indicated address according to the parameters specified before
 calling the CBMR handler.

MF=(G,addr) Specifies the generate form of the TESTCB macro to generates code to modify the
indicated CBMR as specified by the other parameters and to call the CBMR handler.

MF=(G,addr,label)
 Same as MF=(G,addr) but label will be equated to the length of the CBMR

TESTCB EXLST macro parameters

All supported parameters are implemented compatibly with IBM's VSAM implementation.
For details, please refer to the relevant IBM manual.

For ease of access a short summary follows here:
EXLST=addr required to indicate the EXLST to be tested

mod modifier, can optionally be specified after each routine address.
Values: A or N for Active or Not-active.

 When this modifier is specified, only Equal or Not-Equal condition can be returned.
The secondary modifier of L (for Load from Linklib) is not supported.

MF=I or omitted
 Specifies the standard form of the TESTCB to generate an inline CBMR and an inline call to
 the CBMR handler.

MF=L Specifies the list form of the TESTCB macro which generates an inline CBMR but no call
 to the CBMR handler.

MF=(L,addr) Specifies the list form of the TESTCB macro to generate a remote CBMR at the indicated
 location. No call to the CBMR handler is generated.

MF=(L,addr,label)
 Same as MF=(L,addr) but label will be equated to the length of the CBMR.

MF=(E,addr) Specifies the execute form of the TESTCB macro to generate code that will dynamically
 modify the CBMR at the indicated address according to the parameters specified before
 calling the CBMR handler.

MF=(G,addr) Specifies the generate form of the TESTCB macro to generates code to modify the
indicated CBMR as specified by the other parameters and to call the CBMR handler.

MF=(G,addr,label)
 Same as MF=(G,addr) but label will be equated to the length of the CBMR

API for RPL-based interfaces

TESTCB RPL macro parameters
All supported parameters are implemented compatibly with IBM's VSAM implementation.
For details, please refer to the relevant IBM manual.

For ease of access a short summary follows here:
RPL=addr required to indicate the RPL to be tested

FTNCD=nr Values used for FTNCD and their meaning can be found in the IBM manual
 “DFSMS Macro Instructions for Datasets”, chapter “Return and Reason Codes”, section
 “Component Codes”

RBA=nr – zVSAM supports this keyword only for ESDS. For any other type of cluster a value of foxes
 will be assumed by default.

MF=I or omitted
 Specifies the standard form of the TESTCB to generate an inline CBMR and an inline call to
 the CBMR handler.

MF=L Specifies the list form of the TESTCB macro which generates an inline CBMR but no call
 to the CBMR handler.

MF=(L,addr) Specifies the list form of the TESTCB macro to generate a remote CBMR at the indicated
 location. No call to the CBMR handler is generated.

MF=(L,addr,label)
 Same as MF=(L,addr) but label will be equated to the length of the CBMR.

MF=(E,addr) Specifies the execute form of the TESTCB macro to generate code that will dynamically
 modify the CBMR at the indicated address according to the parameters specified before
 calling the CBMR handler.

MF=(G,addr) Specifies the generate form of the TESTCB macro to generates code to modify the
indicated CBMR as specified by the other parameters and to call the CBMR handler.

MF=(G,addr,label)
 Same as MF=(G,addr) but label will be equated to the length of the CBMR

POINT macro parameters
GET macro parameters
PUT macro parameters
ERASE macro parameters
CHECK macro parameters
ENDREQ macro parameters
VERIFY macro parameters

List of changes
Date Author Description

2018-09-16 Abe Kornelis Remove SPX from VS records that have only a single segment.
Change order and numbering of chapters
Move macro parameter descriptions to addendum
Expand chapter on compatibility
In the addendum for GENCB ACB add explanation on MF usage

2018-09-18 Abe Kornelis Various small changes as suggested by Hugh Sweeney
Moved zACB and zEXLST layout paragraphs to the addenda.

2018-09-20 Abe Kornelis Various small changes as suggested by Melvyn. See mail dated 2018-09-19
22:19

2018-09-27 Abe Kornelis Added content for MODCB ACB, including addendum.

2018-09-29 Abe Kornelis Added content for SHOWCB ACB, including addendum

2018-10-01 Abe Kornelis Added content for TESTCB ACB, including addendum

2018-10-07 Abe Kornelis Added comment on CBMR layout to chapters on GENCB ACB, MODCB
ACB, SHOWCB ACB and TESTCB ACB.
Parm AM=VSAM added to GENCB ACB chapter.
Added content for GENCB EXLST, including addendum

2018-10-08 Abe Kornelis Added content for MODCB EXLST, including addendum
Added content for SHOWCB EXLST, including addendum
Added content for TESTCB EXLST, including addendum

2018-10-09 Abe Kornelis CBMR split into header and separate tail sections
CBMR header description added

2018-10-10 Abe Kornelis Minor changes as suggested by Melvyn's mail dd 2018-10-09 23:40
Addition of chapter titles for RPL-based interfaces to addenda.

2018-10-11 Abe Kornelis Added CBMR description – body for ACB

2018-10-13 Abe Kornelis Added CBMR description – body for EXLST
Added RPL macro description, including addendum
Added GENCB RPL macro description, including addendum
Added MODCB RPL macro description, including addendum
Added SHOWCB RPL macro description, including addendum
Added TESTCB RPL macro description, including addendum

2018-10-15 Abe Kornelis Added ACBPFX pointer to zACB layout

2018-10-16 Abe Kornelis Added CBMR description – body for RPL
ACBTYPE → ACBSTYPE
Removed ACBMACR3_NLW and ACBMACR3_MODE
ACBCUEL → ACBUEL
ACBOCK → ACBLOCK

2018-10-21 Abe Kornelis ACB ADR/KEY improved keyword description in addendum
ACB IN/OUT improved keyword description in addendum
ACB DDNAME improved keyword description in ACB macro chapter and
the addendum
Unsupported parameters and keywords on ACB, EXLST, RPL changed
from “flagged as error” to “ignored”

2018-10-22 Abe Kornelis Add description of prefix block, including counters area.

Date Author Description

Updated addendum for SHOWCB/TESTCB with reference to source of
data for each keyword.
Added prefix field PFXIXLVL.
Added instructions for RPL-based operations on how to maintain prefix
counter fields.
Added description of spacemap block.

2018-10-23 Abe Kornelis Specify that SHOWCB/TESTCB for RBA/XRBA is supported for ESDS
only. Foxes for any other component.

2018-10-24 Abe Kornelis Add description for block header, block, footer, record pointer list

2018-10-26 Abe Kornelis Added description of open macro logic

2018-10-27 Abe Kornelis Added eyecatcher to the prefix area, moved record length and key info
fields to beginning of prefix area
BHDRPREV/NEXT on prefix block documented as being foxes

2018-10-28 Abe Kornelis Added ACBVER to zACB layout
Added Area to Terminology chapter
Max. block size reduced from 2G to 16MB
Added ACBXPFX to zACB layout
Added description of open execution logic

2018-11-21 Abe Kornelis In API on macro interfaces improved wording for handling of (as yet)
unsupported macro parameters.
Add ATRB=VESDS for TESTCB ACB
Improved picture and text on spacemap block layout

2018-11-22 Abe Kornelis BHDRPREV/NEXT details expanded
Removed PFXBSEG/PFXESEG

2018-11-25 Abe Kornelis Spacemap area structure. Segmented records were missing. Added.

2018-11-29 Abe Kornelis Added diagrams to chapter on block header structure.

2018-12-02 Abe Kornelis Added alternative diagram for chaining segments. Preferred solution not
yet determined
And added drawings for chaining index blocks

2018-12-09 Abe Kornelis Structure of Physical files: ELIX added to the list of block types
Block Header Structure: BHDRFLGS changed to BHDRFLG1 and added
BHDRFLG2 with BHDR_ELX

2018-12-17 Abe Kornelis Put PFXBSEG/PFXESEG back in
Corrected typos in drawings for explaining BHDRNEXT/PREV
RPTR_END no longer all foxes, foxes only for RPTRREC@
Added 4 date fields to the prefix structure for creation and last
 update timestamps for both data and index component.
MF=omitted changed to MF= in various locations

2019-01-06 Abe Kornelis Added various fields to RPL

Date Author Description

2019-01-23 Melvyn Maltz Version 2.0
Took over the D&L, not documenting spelling, syntax, bad references and
other trivia
Added hyperlinks
Amended CBMRACB fields
Amended CBMRRPL fields
Removed RPL TIMEOUT...VTAM only
Updated Prefix Block DSECT

2019-02-17 Melvyn Maltz Version 2.1
Corrected diagram “Segmented Data Block Structure”
CBMR RPL – Added GEN MOD SHOW TEST column
CBMR ACB – Added GEN MOD SHOW TEST column
CBMRACB RMODE31 – Added description

2019-02-21 Melvyn Maltz Corrections to RPL DSECT. Added RPLFEEDB
Note added to AIXPC

2019-02-22 Melvyn Maltz Corrections and updates to ACB DSECT

2019-02-25 Melvyn Maltz Added note to MODCB ACB about turning off MACRF=OUT

2019-02-26 Melvyn Maltz Revised the OPEN Execution Logic table to distinguish V1 from V2

2019-03-02 Melvyn Maltz Revised the EXLST DSECT

2019-03-03 Melvyn Maltz Added section EXLST Macro Logic
CBMR EXLST – Added GEN MOD SHOW TEST column
 Added _MODS in preparation for MODCB

2019-03-10 Melvyn Maltz Removed sections on Logical Processes that don't involve calls to Java eg.
MODCB. These are already well described

2019-03-12 Melvyn Maltz Added Return and Reason Codes to MODCB ACB, RPL and EXLST

2019-03-17 Melvyn Maltz Revised all sections on OPEN and CLOSE
Added “CLOSE Macro Logic”
Removed OPCL DSECT, replaced with list formats

2019-03-18 Melvyn Maltz Added Data Block diagram
Most references and diagrams for LDS removed, too long term

2019-04-15 Melvyn Maltz Added hyperlinks to EXLST CBMR Modifiers

2019-04-17 Melvyn Maltz Added UPAD= and RLSWAIT=
Although not supported, they need to exist
Amended the EXLST CBMR keyword values to fit them in
Added WAREA, LENGTH and LOC to EXLST CBMR

2019-05-19 Melvyn Maltz Added WAREA, LENGTH and LOC to ACB CBMR
Amended the ACB CBMR keyword values to fit them in

2019-06-26 Melvyn Maltz Added WAREA, LENGTH and LOC to RPL CBMR
Added Return and Reason Codes to GENCB ACB, RPL and EXLST

2019-06-29 Melvyn Maltz Changed PFXMAPOF from 3 to 4 bytes, adjusted following offsets

2019-06-30 Melvyn Maltz Version 2.2
Open Execution Logic, removed references to OC24/OC31/OCPL

2019-07-06 Melvyn Maltz RPLACB changed to RPLDACB to match IBM

Date Author Description

2019-07-07 Melvyn Maltz CBMR EXLST:
Added CBMRXL_AREA and _EXLST
Marked fields used for SHOWCB

2019-07-08 Melvyn Maltz zVSAM V2 compatibility with zVSAM V1
Added item 4 about re-assembling modules with OPEN

2019-08-17 Melvyn Maltz EXLST Macro corrected
Extra comments added to clarify missing parms for GENCB

2019-08-24 Melvyn Maltz AM=VSAM added to Macros
SHOWCB EXLST, UPAD and RLSWAIT removed, IBM doesn't support
them. JRNAD will return zero

2019-10-09 Melvyn Maltz Added subfields to RPLFEEDB
Added RPLCXRBA

2019-10-13 Melvyn Maltz Added CBMRACB_ACB and CBMRRPL_RPL for SHOWCB
Renamed CBMRRPL_CRBA to CBMRRPL_RBA

2019-10-20 Melvyn Maltz Renamed CBMRRPL_AREA to CBMRRPL_RECAREA and added
CBMRRPL_AREA to resolve conflict between SHOWCB RPL AREA=
and FIELDS=AREA

Renumbered CBMRRPL_RPLLEN to X'6E' to avoid conflict with
CBMRXL_XLSTLEN

Added CBMRRPL_TRANSID for SHOWCB

2019-10-27 Melvyn Maltz Corrected syntax to all forms of MF=L

SHOWCB, ACB, EXLST and RPL have all 3 lengths:
ACBLEN, EXLLEN and RPLLEN

New section added “No block type specified” and SHOWCB for extracting
lengths only

New section added “CBMR description-body for no block specified”

2019-11-13 Melvyn Maltz SHOWCB ACB FIELDS revised
Added several X~ fields as SHOWCB counters expect 4 bytes and the CTR
fields are 8 bytes

2020-01-26 Melvyn Maltz SHOWCB ACB revisions
CBMRACB_RMODE31 and CBMRACB_SHRPL codes changed to avoid
conflict with CBMRRPL_RPLLEN and CBMRXL_XLSTLEN

2020-02-24 Melvyn Maltz CBMRACB_SDTASZ added as an 8-byte field
CTRSDTA renamed to CTRSDTASZ
References to a value of zero returned removed

2020-03-01 Melvyn Maltz Corrections made to the description of CTRLOKEY@
This is an offset to LL+key

2020-03-02 Melvyn Maltz Added CBMRACB_AREA

2020-03-15 Melvyn Maltz Added CBMRACB_XNINSR

Date Author Description

2020-04-28 Melvyn Maltz Reconstructed the Macro description sections to be more like that of the
VSAM Macro manual
Separate chapter for the xCB Macro MF= with hyperlinks to it from each
of them, duplicate MF= descriptions removed

2020-05-28 Melvyn Maltz Added diagrams for Data and Index (L0 and Ln) blocks

2020-05-29 Melvyn Maltz Version 2.3
Removing individual sections on Fixed, Variable etc. and ESDS, KSDS
and RRDS
Removing Concepts
Replaced with all 12 dataset type diagrams with descriptions

Removed Displaced Record structure
Added SPX format
Added AIX structures and formats
Added ELIX structures and formats

Removed Counters area values, these are referenced in the macros
themselves

Added Implied OPEN table
Added Close execution logic (incomplete)

All OPEN-related, EXLST/Exit-related and CLOSE-related doc now in
single chapters

Addenda items moved to the appropriate chapter or deleted

Deleted all DSECTs, too difficult to maintain both the DSECT and the doc
The DSECTs are fully commented and offsets can be seen in an assembly

CBMR details moved to the xCB chapter and simplified

